Skip to content

Latest commit

 

History

History
55 lines (41 loc) · 1.5 KB

read401-14.md

File metadata and controls

55 lines (41 loc) · 1.5 KB

Data Visualization

matplotlib

matplotlib is probably the single most used Python package for 2D-graphics

Example: if we want to drow acos and sin the code are

import numpy as np

X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
plt.plot(X, C,): # using to drow 
plt.plot(X, S, color="red")

Setting limits using to limited the value such as make a minimum to x or maximum :

plt.xlim(X.min()*1.1, X.max()*1.1)
plt.ylim(C.min()*1.1, C.max()*1.1)

Setting tick labels

Each Axes has an x-axis and a y-axis, which contain ticks, which have major and minor ticklines and ticklabels. There’s also the axis labels, title, and legend to consider when you want to customize your axes, but also taking into account the axis scales and gridlines might come in handy.

plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
       [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])

plt.yticks([-1, 0, +1],
       [r'$-1$', r'$0$', r'$+1$'])

Moving spines

they are the simple black square that you get to see when you don’t plot any data at all but when you have initialized the Axes

ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))

Adding a legend

plt.legend(loc='upper left', frameon=False)