-
Notifications
You must be signed in to change notification settings - Fork 38
/
quant3.py
149 lines (121 loc) · 5.62 KB
/
quant3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import pandas as pd
import urllib.request
import os
import time
from datetime import datetime
from time import mktime
import matplotlib as mpl
mpl.use('TkAgg')
import matplotlib.pyplot as plt
from matplotlib import style
style.use("dark_background")
import re
from my_utils import my_gather, my_df_cols
path = "/Users/tomiwa/Downloads/intraQuarter"
def check_yahoo():
statspath = path + "/_KeyStats"
stock_list = [x[0] for x in os.walk(statspath)]
for e in stock_list[1:555:5]:
try:
e = e.split('/')[-1]
link = "http://finance.yahoo.com/q/ks?s=" + e.upper() + "+Key+Statistics"
resp = urllib.request.urlopen(link).read()
# print("resp: ", resp)
save = "forward/" + str(e) + ".html"
store = open(save, "w")
store.write(str(resp))
store.close()
# time.sleep(3)
except FileNotFoundError as e:
print("What Happened? ", str(e))
os.makedirs("forward")
time.sleep(2)
except Exception as e:
print("Uhoh: ", str(e))
time.sleep(2)
def forward(gather=my_gather):
df = pd.DataFrame(columns=my_df_cols)
file_list = os.listdir("forward")
for each_file in file_list:
ticker = each_file.split(".html")[0]
full_file_path = "forward/" + each_file
source = open(full_file_path, "r").read()
try:
value_list = []
for each_data in gather: # for each metric recorded that quarter
try:
# this regex searches for the metric string and first digits after it
# print("each_data(1): ", each_data)
regex = re.escape(each_data) + r'.*?(\d{1,8}\.\d{1,8}M?B?|N/A)%?'
value = re.search(regex, source)
value = (value.group(1))
# print("regex(1): ",regex)
# print("value(1): ",value)
#
# print("value(2): ", value)
if "B" in value:
value = float(value.replace('B', '')) * 1000000000
elif "M" in value:
value = float(value.replace("M", '')) * 1000000
value_list.append(value)
# print("value(3): ", value)
except Exception as e:
value = "N/A"
value_list.append(value)
print("UhOh!: ", str(e))
# print("N/A value: ", str(e))
if value_list.count("N/A") > 15:
pass
else:
df = df.append({'Date': "N/A",
'Unix': "N/A",
'Ticker': ticker,
'Price': "N/A",
'stock_p_change': "N/A",
'SP500': "N/A",
'sp500_p_change': "N/A",
'Difference': "N/A",
'DE Ratio': value_list[0],
# 'Market Cap':value_list[1],
'Trailing P/E': value_list[1],
'Price/Sales': value_list[2],
'Price/Book': value_list[3],
'Profit Margin': value_list[4],
'Operating Margin': value_list[5],
'Return on Assets': value_list[6],
'Return on Equity': value_list[7],
'Revenue Per Share': value_list[8],
'Market Cap': value_list[9],
'Enterprise Value': value_list[10],
'Forward P/E': value_list[11],
'PEG Ratio': value_list[12],
'Enterprise Value/Revenue': value_list[13],
'Enterprise Value/EBITDA': value_list[14],
'Revenue': value_list[15],
'Gross Profit': value_list[16],
'EBITDA': value_list[17],
'Net Income Avl to Common ': value_list[18],
'Diluted EPS': value_list[19],
'Earnings Growth': value_list[20],
'Revenue Growth': value_list[21],
'Total Cash': value_list[22],
'Total Cash Per Share': value_list[23],
'Total Debt': value_list[24],
'Current Ratio': value_list[25],
'Book Value Per Share': value_list[26],
'Cash Flow': value_list[27],
'Beta': value_list[28],
'Held by Insiders': value_list[29],
'Held by Institutions': value_list[30],
'Shares Short (as of': value_list[31],
'Short Ratio': value_list[32],
'Short % of Float': value_list[33],
'Shares Short (prior ': value_list[34],
'Status': "N/A"},
ignore_index=True)
except Exception as e:
print("UHOH x2!: ", str(e))
pass
df.dropna(axis=1, how="all", inplace=True)
df.to_csv("forward_sample_WITH_NA.csv")
forward()