-
Notifications
You must be signed in to change notification settings - Fork 4
/
BestApproximationDiv1.cpp
250 lines (227 loc) · 7.6 KB
/
BestApproximationDiv1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#include <vector>
#include <list>
#include <map>
#include <set>
#include <queue>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <cassert>
#include <climits>
#include <cstring>
using namespace std;
typedef long long int64;
typedef vector<int> vi;
typedef string ST;
typedef stringstream SS;
typedef vector< vector <int> > vvi;
typedef pair<int,int> ii;
typedef vector <string> vs;
#define Pf printf
#define Sf scanf
#define ep 1e-9
#define PI M_PI
#define E M_E
#define CL(a, b) memset(a, b, sizeof(a))
#define mp make_pair
#define pb push_back
#define all(c) (c).begin(), (c).end()
#define tr(i, c) for(__typeof((c).begin()) i = (c).begin(); i != (c).end(); i++)
#define present(x, c) ((c).find(x) != (c).end()) //map & set//
#define cpresent(x, c) (find(all(c),x) != (c).end()) //vector & list//
#define forn(i, n) for(int i = 0, loop_ends_here = (int)n; i < loop_ends_here; i++)
#define forab(i, a, b) for(int i = a, loop_ends_here = (int) b; i <= loop_ends_here; i++)
#define rep(i, a, b) for(int i = a, loop_ends_here = (int)b; i>=loop_ends_here; i--)
#define read(n) scanf("%d", &n)
#define write(n) printf("%d ", n)
#define writeln(n) printf("%d\n", n)
class BestApproximationDiv1
{
public:
string findFraction(int maxDen, string num)
{
int a = 0, b = 1, mx = 1;
ST s = "123456";
char ch[111] = {0};
forab(d, 1, maxDen) {
forab(n, 0, d) {
// double div = (int)(1.0*n/d*1000000);
// div /= 1000000;
// sprintf(ch, "%0.6lf", div);
sprintf(ch, "0.%6lld", 1000000ll*n/d);
int cnt = 1;
forab(i, 2, 7) {
if(num[i] == ch[i])
cnt++;
else
break;
}
if(cnt > mx) {
a = n, b = d;
mx = cnt;
}
// printf("%d/%d = %lf = %s, cnt = %d\n", n, d, 1.0*n/d, ch, cnt);
}
}
cout << a << "/" << b << endl;
SS ss;
ss << a << "/" << b << " has " << mx << " exact digits";
return ss.str();
}
};
// BEGIN KAWIGIEDIT TESTING
// Generated by KawigiEdit 2.1.8 (beta) modified by pivanof
#include <iostream>
#include <string>
#include <vector>
using namespace std;
bool KawigiEdit_RunTest(int testNum, int p0, string p1, bool hasAnswer, string p2) {
cout << "Test " << testNum << ": [" << p0 << "," << "\"" << p1 << "\"";
cout << "]" << endl;
BestApproximationDiv1 *obj;
string answer;
obj = new BestApproximationDiv1();
clock_t startTime = clock();
answer = obj->findFraction(p0, p1);
clock_t endTime = clock();
delete obj;
bool res;
res = true;
cout << "Time: " << double(endTime - startTime) / CLOCKS_PER_SEC << " seconds" << endl;
if (hasAnswer) {
cout << "Desired answer:" << endl;
cout << "\t" << "\"" << p2 << "\"" << endl;
}
cout << "Your answer:" << endl;
cout << "\t" << "\"" << answer << "\"" << endl;
if (hasAnswer) {
res = answer == p2;
}
if (!res) {
cout << "DOESN'T MATCH!!!!" << endl;
} else if (double(endTime - startTime) / CLOCKS_PER_SEC >= 2) {
cout << "FAIL the timeout" << endl;
res = false;
} else if (hasAnswer) {
cout << "Match :-)" << endl;
} else {
cout << "OK, but is it right?" << endl;
}
cout << "" << endl;
return res;
}
int main() {
bool all_right;
all_right = true;
int p0;
string p1;
string p2;
{
// ----- test 0 -----
p0 = 115;
p1 = "0.141592";
p2 = "16/113 has 7 exact digits";
all_right = KawigiEdit_RunTest(0, p0, p1, true, p2) && all_right;
// ------------------
}
if (all_right) {
cout << "You're a stud (at least on the example cases)!" << endl;
} else {
cout << "Some of the test cases had errors." << endl;
}
return 0;
}
// PROBLEM STATEMENT
// Elly is not a big fan of mathematical constants. Most of them are infinite, and therefore hard to memorize. Fractions, on the other hand, are often easier to remember and can provide good approximations. For example, 22/7 = 3.1428... is one way to approximate Pi. Unfortunately, it's only accurate to 2 places after the decimal point, so it doesn't help at all. A slightly better example is 355/113 = 3.14159292... which is correct up to 6 digits after the decimal point.
//
// Elly understands that working with infinite decimal fractions is going to be very difficult, so she first wants to find a good way to approximate floating point numbers with decimal representations that are finite. Your task is to help her in this mission. You will be given a string number containing the decimal representation of a non-negative fraction strictly less than 1. There will be exactly 6 digits after the decimal point in number (trailing zeros are possible and significant). More precisely, number will be formatted "0.dddddd" (quotes for clarity) where each d is a decimal digit ('0'-'9').
//
// Given a fraction F = A/B, where 0 <= A < B, its quality of approximation with respect to number is calculated as follows:
//
//
// Let S be the decimal fraction (infinite or finite) representation of F.
// If S is infinite or the number of digits after the decimal point in S is greater than 6, only consider the first 6 decimals after the decimal point in S. Truncate the rest of the digits without performing any kind of rounding.
// If the number of digits after the decimal point in S is less than 6, append trailing zeroes to the right side until there are exactly 6 digits after the decimal point.
// The quality of approximation is the number of digits in the longest common prefix of S and number. The longest common prefix of two numbers is the longest string which is a prefix of the decimal representations of both numbers with no extra leading zeroes. For example, "3.14" is the longest common prefix of 3.1428 and 3.1415.
//
//
// Elly doesn't like long approximations either, so you are only allowed to use fractions where the denominator is less than or equal to maxDen. Find an approximation F = A/B of number such that 1 <= B <= maxDen, 0 <= A < B, and the quality of approximation is maximized. Return a string formatted "A/B has X exact digits" (quotes for clarity) where A/B is the approximation you have found and X is its quality. If there are several such approximations, choose the one with the smallest denominator among all of them. If there is still a tie, choose the one among those with the smallest numerator.
//
//
// DEFINITION
// Class:BestApproximationDiv1
// Method:findFraction
// Parameters:int, string
// Returns:string
// Method signature:string findFraction(int maxDen, string number)
//
//
// CONSTRAINTS
// -maxDen will be between 1 and 1000, inclusive.
// -number will contain exactly 8 characters.
// -number will consist of a digit '0', followed by a period ('.'), followed by exactly six digits ('0'-'9').
//
//
// EXAMPLES
//
// 0)
// 42
// "0.141592"
//
// Returns: "1/7 has 3 exact digits"
//
// 3 plus the current approximation yields an approximation of Pi.
//
// 1)
// 3
// "0.133700"
//
// Returns: "0/1 has 1 exact digits"
//
// Not a lot of options here.
//
// 2)
// 1000
// "0.123456"
//
// Returns: "10/81 has 7 exact digits"
//
//
//
// 3)
// 1000
// "0.420000"
//
// Returns: "21/50 has 7 exact digits"
//
// This one can be represented in more than one way. Be sure to choose the one with the lowest denominator.
//
// 4)
// 100
// "0.909999"
//
// Returns: "10/11 has 4 exact digits"
//
// Even though 91/100 is a much closer approximation, 10/11 matches up to 3 digits, and 91/100 only to one.
//
// 5)
// 115
// "0.141592"
//
// Returns: "16/113 has 7 exact digits"
//
// A better approximation for the decimal part of Pi.
//
// END KAWIGIEDIT TESTING
//Powered by KawigiEdit 2.1.8 (beta) modified by pivanof!