-
Notifications
You must be signed in to change notification settings - Fork 92
/
projection.py
121 lines (104 loc) · 4.95 KB
/
projection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import torch
import math
import cv2
def isRotationMatrix(R):
"""
return true if the R is a rotation matrix else False (M . T^T = I and det(M) = 1)
"""
if R.ndim != 2 or R.shape[0] != R.shape[1]:
return False
isIdentity = np.allclose(R.dot(R.T), np.identity(R.shape[0], np.float))
isDetEqualToOne = np.allclose(np.linalg.det(R), 1)
return isIdentity and isDetEqualToOne
def eulerToRodrigues(angles):
"""
convert euler angles to rodrigues
"""
rotx = np.array([[1, 0, 0],
[0, math.cos(angles[0]), -math.sin(angles[0])],
[0, math.sin(angles[0]), math.cos(angles[0])]
])
roty = np.array([[math.cos(angles[1]), 0, math.sin(angles[1])],
[0, 1, 0],
[-math.sin(angles[1]), 0, math.cos(angles[1])]
])
rotz = np.array([[math.cos(angles[2]), -math.sin(angles[2]), 0],
[math.sin(angles[2]), math.cos(angles[2]), 0],
[0, 0, 1]
])
R = np.dot(rotz, np.dot(roty, rotx))
rotVec, _ = cv2.Rodrigues(R)
return rotVec
def rodrigues2Euler(rotation_vector):
"""
retrieve euler angles from rodrigues matrix
"""
rMat, _ = cv2.Rodrigues(rotation_vector)
assert (rMat.shape[0] == 3 and rMat.shape[1] == 3 and isRotationMatrix(rMat))
roll = math.atan2(rMat[2, 1], rMat[2, 2])
pitch = math.atan2(-rMat[2, 0], math.sqrt(rMat[0, 0] * rMat[0, 0] + rMat[1, 0] * rMat[1, 0]))
yaw = math.atan2(rMat[1, 0], rMat[0, 0])
return np.array([roll, pitch, yaw])
def estimateCameraPosition(focalLength, image_center, landmarks, vertices, rotAngles, translation):
'''
estimate the camera position (rotation and translation) using perspective n points pnp
:param focalLength: tensor representing the camera focal length of shape [n]
:param image_center: tensor representing the camera center point [n, 2]
:param landmarks: tensor representing the 2d landmarks in pixel coordinates system [n, verticesNumber, 2]
:param vertices: tensor representing the 3d coordinate position of the landmarks [n, verticesNumber, 3]
:param rotAngles: the initial rotation angles [n, 3]
:param translation: the initial translation angles [n, 3]
:return: estimated rotation [n, 3] , estimated translations [n, 3]
'''
assert (focalLength.dim() == 1 and
image_center.dim() == 2 and
image_center.shape[-1] == 2 and
landmarks.dim() == 3 and landmarks.shape[-1] == 2 and
vertices.dim() == 3 and vertices.shape[-1] == 3 and
rotAngles.dim() == 2 and rotAngles.shape[-1] == 3 and
translation.dim() == 2 and translation.shape[-1] == 3)
assert (focalLength.shape[0] == image_center.shape[0] == landmarks.shape[0] == vertices.shape[0] == rotAngles.shape[0] == translation.shape[0])
rots = []
transs = []
for i in range(focalLength.shape[0]):
rot, trans = solvePnP(focalLength[i].item(),
image_center[i].detach().cpu().numpy(),
vertices[i],
landmarks[i],
rotAngles[i],
translation[i])
rots.append(rot)
transs.append(trans)
return torch.tensor(rots, device=vertices.device, dtype=torch.float32), torch.tensor(transs, device=vertices.device,
dtype=torch.float32)
def solvePnP(focalLength, imageCenter, vertices, pixels, rotAngles, translation):
"""
Finds an object pose from 3D vertices <-> 2D pixels correspondences
Inputs:
* focalLength: camera focal length
* imageCenter: center [x, y] of the image
* vertices: float tensor [n, 3], of vertices
* pixels: float tensor [n, 2] of corresponding pixels
* rotAngles: initial euler angles
* translation: initial translation vector
"""
cameraMatrix = np.array(
[[focalLength, 0, imageCenter[0]],
[0, focalLength, imageCenter[1]],
[0, 0, 1]], dtype="double"
)
success, rotVec, transVec = cv2.solvePnP(vertices.clone().detach().cpu().numpy(),
pixels[:, None].detach().cpu().numpy(),
cameraMatrix,
np.zeros((4, 1)),
eulerToRodrigues(rotAngles.detach().cpu().numpy()),
translation.detach().cpu().numpy(),
True,
flags=cv2.SOLVEPNP_ITERATIVE)
assert success, "failed to estimate the pose using pNp"
rotAngles = rodrigues2Euler(rotVec)
if rotAngles[0] < 0.:
rotAngles[0] += 2. * math.pi
translation = transVec.reshape((3,))
return rotAngles, translation