diff --git a/ppi_py/ppi.py b/ppi_py/ppi.py index cc9a32e..d499f6a 100644 --- a/ppi_py/ppi.py +++ b/ppi_py/ppi.py @@ -1094,7 +1094,7 @@ def ppboot( Yhat_unlabeled (ndarray): Predictions corresponding to the unlabeled data. X (ndarray, optional): Covariates corresponding to the gold-standard labels. Defaults to `None`. If `None`, the estimator is assumed to only take in `Y`. X_unlabeled (ndarray, optional): Covariates corresponding to the unlabeled data. Defaults to `None`. If `None`, the estimator is assumed to only take in `Y`. If `X` is not `None`, `X_unlabeled` must also be provided, and vice versa. - lam (float, optional): Power-tuning parameter (see `[ADZ23] `__ in addition to `[Z24] `__). The default value `None` will estimate the optimal value from data, in this case, using a nested bootstrap. Setting `lam=1` recovers PPI with no power tuning, and setting `lam=0` recovers the classical point estimate. NOTE: Setting `lam=None`, which is the default, will result in a nested bootstrap, which can be computationally expensive. + lam (float, optional): Power-tuning parameter (see `[ADZ23] `__ in addition to `[Z24] `__). The default value `None` will estimate the optimal value from data. Setting `lam=1` recovers PPBoot with no power tuning, and setting `lam=0` recovers the classical bootstrap interval. n_resamples (int, optional): Number of bootstrap resamples. Defaults to `1000`. n_resamples_lam (int, optional): Number of bootstrap resamples for the power-tuning parameter. Defaults to `50`. alpha (float, optional): Error level; the confidence interval will target a coverage of 1 - alpha. Must be in (0, 1). Defaults to `0.1`.