forked from google/lyra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
conv1d_layer_wrapper.h
177 lines (161 loc) · 6.89 KB
/
conv1d_layer_wrapper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LYRA_CODEC_CONV1D_LAYER_WRAPPER_H_
#define LYRA_CODEC_CONV1D_LAYER_WRAPPER_H_
#include <algorithm>
#include <memory>
#include <string>
#include <utility>
#include "glog/logging.h"
#include "absl/memory/memory.h"
#include "layer_wrapper.h"
#include "sparse_inference_matrixvector.h"
namespace chromemedia {
namespace codec {
// Class that wraps the data and logic of conv1d layers.
template <typename WeightType, typename RhsType, typename OutputType,
typename DiskWeightType>
class Conv1DLayerWrapper
: public LayerWrapper<WeightType, RhsType, OutputType, DiskWeightType> {
public:
using Super = LayerWrapper<WeightType, RhsType, OutputType, DiskWeightType>;
static std::unique_ptr<
Conv1DLayerWrapper<WeightType, RhsType, OutputType, DiskWeightType>>
Create(const LayerParams& params) {
const std::string layer_prompt = "|" + params.prefix + "| layer: ";
// TODO(b/161015017): Support more general stride and kernel size
// combinations.
if (params.skip_connection) {
LOG(ERROR) << layer_prompt
<< "Conv1D Layer does not support skip connections.";
if (params.stride == 1) {
LOG(WARNING) << layer_prompt
<< "Use DilatedConvolutionalLayerWrapper with |dilation| "
<< "= 1 and |stride| = 1 to allow skip connections.";
}
return nullptr;
}
if (params.dilation != 1) {
LOG(ERROR) << layer_prompt
<< "Use DilatedConvolutionalLayerWrapper instead by setting "
<< "|params.type| to |kDilated|.";
return nullptr;
}
auto layer = Super::LoadAndCheckLayer(
params.from, params.prefix, layer_prompt, params.num_filters,
params.kernel_size * params.num_input_channels, params.num_threads);
if (layer == nullptr) {
return nullptr;
}
const int input_buffer_rows = layer->cols();
const int num_input_channels = input_buffer_rows / params.kernel_size;
const int output_rows = layer->rows();
return absl::WrapUnique(
new Conv1DLayerWrapper<WeightType, RhsType, OutputType, DiskWeightType>(
num_input_channels, output_rows, params.length, input_buffer_rows,
params.stride, params.relu, params.per_column_barrier,
std::move(layer)));
}
void Run(int tid, csrblocksparse::SpinBarrier* spin_barrier,
csrblocksparse::MutableVectorView<OutputType> output_view) override {
this->layer_->SpMM_bias(
csrblocksparse::VectorView<RhsType>(this->input_buffer_), &output_view,
this->relu_, tid, this->per_column_barrier_ ? spin_barrier : nullptr);
spin_barrier->barrier();
Reset(tid, spin_barrier);
}
// The part of |input_buffer_| updated by the previous layer corresponding to
// time = t (out of all past values). It is the bottom
// |num_inputs_to_update_| rows of the current column.
csrblocksparse::MutableVectorView<RhsType> InputViewToUpdate() override {
return csrblocksparse::MutableVectorView<RhsType>(
this->input_buffer_.data() + this->input_buffer_rows_ -
this->num_inputs_to_update_,
this->num_inputs_to_update_, this->length_, this->input_buffer_rows_);
}
private:
Conv1DLayerWrapper() = delete;
explicit Conv1DLayerWrapper(
int num_input_channels, int output_rows, int length,
int input_buffer_rows, int stride, bool relu, bool per_column_barrier,
std::unique_ptr<csrblocksparse::SparseLinearLayer<WeightType, RhsType>>
layer)
: Super(num_input_channels, output_rows, length, input_buffer_rows,
length, relu, per_column_barrier, std::move(layer)),
num_inputs_to_update_(
std::min(stride * num_input_channels, input_buffer_rows)) {}
// For Conv1D layers, |stride| > 1 is supported. Every time
// |stride| * |num_input_channels| elements are pushed in from the bottom.
//
// For example, for a layer of |kernel_size| = 3 and |stride| = 1, the memory
// layout of |input_buffer_| after loading v0 and calling Reset() should look
// like this (v0 is the input vector at t = 0, v1 is at t = 1, and so on):
//
// | | \ //
// |----| \ //
// | v0 | --> |kernel_size| stacks //
// |----| / //
// | | / //
//
// Leaving enough space to load v1. Then after loading v1, it should be:
//
// | | //
// |----| //
// | v0 | //
// |----| //
// | v1 | //
//
// On the other hand, If |stride| = 2, then after the first loading, which
// pushes in v0 and v1. Calling Reset() would move them two stackes up (and
// pushing v0 out), and the buffer looks like this:
//
// | v1 | //
// |----| //
// | | \ //
// |----| --> |stride| spaces //
// | | / //
//
// Leaving enough space to load the next 2 inputs. After the next loading,
// the buffer should look like this:
//
// | v1 | //
// |----| //
// | v2 | //
// |----| //
// | v3 | //
//
void Reset(int tid, csrblocksparse::SpinBarrier* spin_barrier) override {
// If |num_inputs_to_update_| == |input_buffer_rows_| it means that
// the whole buffer is overwritten evey time, so there is no need to move
// elements.
if (this->num_inputs_to_update_ < this->input_buffer_rows_) {
if (tid == 0) {
// Shift the current column up by |num_inputs_to_update_| elements.
std::move(this->input_buffer_.data() + this->num_inputs_to_update_,
this->input_buffer_.data() + this->input_buffer_rows_,
this->input_buffer_.data());
}
spin_barrier->barrier();
}
}
// Number of input elements to update after each matrix multiplication. Equal
// to the minimum between |input_buffer_rows_| and
// |num_input_channels_| * stride (not stored).
const int num_inputs_to_update_;
};
} // namespace codec
} // namespace chromemedia
#endif // LYRA_CODEC_CONV1D_LAYER_WRAPPER_H_