forked from andreacesari/pyAvalanches
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpuSwitchtime_v0.py
204 lines (159 loc) · 5.07 KB
/
gpuSwitchtime_v0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Mirror is done inside the kernel
import numpy
import time
import scipy.ndimage as nd
def gpuSwitchtime(StackImages,dim_x,dim_y,dim_z,usekernel,device=None):
"""
Return a matrix with the positions of a step in a sequence for each pixel
Parameters:
---------------
StackImages: int32 : 3D Array of images
useKernel : string
step = [1]*5 +[-1]*5
zero = [1]*5 +[0] + [-1]*5
dim_x= x-dimensions of images
dim_y= y-dimensions of images
dim_z= z-dimensions of images
device: Set the GPU device to use (numbered from 0). Default is 0
"""
t1=time.time()
if device is None:
CUDA_DEVICE=0
else:
CUDA_DEVICE=device
import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.gpuarray import to_gpu
from pycuda.compiler import SourceModule
if usekernel =="step":
kernel=[1]*5+[-1]*5
kernel2=kernel[::-1]
kernel2=numpy.array(kernel2,dtype=numpy.int32)
if (len(kernel)%2==0):
origin=-1
else:
origin=0
if usekernel =="zero":
kernel=[1]*5 +[0] + [-1]*5
kernel2=kernel[::-1]
kernel2=numpy.array(kernel2,dtype=numpy.int32)
if (len(kernel)%2==0):
origin=-1
else:
origin=0
stepsize=len(kernel)
t1=time.time()
aMod = numpy.zeros(((dim_z+stepsize-1),dim_y,dim_x),dtype=numpy.int32)
switch=numpy.zeros((dim_y,dim_x),dtype=numpy.int32)
mod = SourceModule("""
__global__ void findconvolve1d(int *stack_gpu,int *kernel_gpu ,int *amod,int dim_x, int dim_y, int dim_z,int step_size,int origine)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
int idy = threadIdx.y + blockIdx.y * blockDim.y;
if (idx >= dim_x || idy >= dim_y)
return;
int j,idz,id,id1;
//Copio elementi nel secondo stack per il mirror dei primi e ultimi elementi
for(idz=0;idz<dim_z;idz++)
{
int flat_id = idx + dim_x * idy + (dim_x * dim_y) * idz ;
int flat_id2= idx + dim_x * idy + (dim_x * dim_y) * (idz+step_size/2+origine);
amod[flat_id2]=stack_gpu[flat_id];
}
//Mirror dei primi elementi
int idz2=step_size/2-1+origine;
for(id=0;id<step_size/2+origine;id++)
{
int flat_id = idx + dim_x * idy + (dim_x * dim_y) * idz2;
int flat_id3= idx + dim_x * idy + (dim_x * dim_y) * id;
amod[flat_id3]=stack_gpu[flat_id];
idz2--;
}
//Mirror ultimi elementi
int idz3=dim_z-1;
for(id1=dim_z+step_size/2+origine;id1<dim_z+step_size-1;id1++)
{
int flat_id4= idx + dim_x * idy + (dim_x * dim_y) * id1;
int flat_id5= idx + dim_x * idy + (dim_x * dim_y) * idz3;
amod[flat_id4]=stack_gpu[flat_id5];
idz3--;
}
for(idz = 0; idz <dim_z; idz++)
{
int flat_id8 = idx + dim_x * idy + (dim_x * dim_y) * idz;
stack_gpu[flat_id8]=0;
}
for(idz=step_size/2+origine;idz<dim_z+step_size/2+origine;idz++)
{
int flat_id6 = idx + dim_x * idy + (dim_x * dim_y) * (idz-step_size/2-origine);
for(j=0;j<step_size;j++)
{
int flat_id7 = idx + dim_x * idy + (dim_x * dim_y) * (idz-step_size/2-origine+j);
stack_gpu[flat_id6]+=amod[flat_id7]*kernel_gpu[j];
}
}
}
__global__ void findmin(int *stack_gpu,int *switch_gpu,int dim_x, int dim_y, int dim_z)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
int idy = threadIdx.y + blockIdx.y * blockDim.y;
if (idx >= dim_x || idy >= dim_y)
return;
int flat_id1 = idx + dim_x * idy ;
int min=4294967295;
for(int idz = 0; idz <dim_z; idz++)
{
int flat_id = idx + dim_x * idy + (dim_x * dim_y) * idz;
if(stack_gpu[flat_id]<min)
{
min=stack_gpu[flat_id];
switch_gpu[flat_id1]=idz;
}
}
}
""")
block_size = 32
func = mod.get_function("findconvolve1d")
func2=mod.get_function("findmin") #Crea la matrice con il tempo in cui aviene lo switch
#Host to Device copy
stack_gpu=to_gpu(StackImages)
kernel_gpu=to_gpu(kernel2)
switch_gpu=to_gpu(switch)
aMod_gpu=to_gpu(aMod)
#Function calls
func(stack_gpu,kernel_gpu, aMod_gpu,numpy.int32(dim_x), numpy.int32(dim_y), numpy.int32(dim_z),numpy.int32(stepsize),numpy.int32(origin),
block=(block_size,block_size,1),
grid=((dim_x - 1) / block_size + 1,(dim_y - 1) / block_size + 1))
func2(stack_gpu,switch_gpu,numpy.int32(dim_x), numpy.int32(dim_y), numpy.int32(dim_z),block=(block_size,block_size,1),
grid=((dim_x - 1) / block_size + 1,(dim_y - 1) / block_size + 1))
#Device to host copy
switch=switch_gpu.get()
#Free GPU memory
stack_gpu.gpudata.free()
switch_gpu.gpudata.free()
aMod_gpu.gpudata.free()
tgpu=time.time()-t1
print ("GPU Calculus done in %.4f s" %tgpu)
return switch,tgpu
if __name__ == "__main__":
dim_x=200
dim_y=200
dim_z=200
a = numpy.random.randn(dim_z,dim_y,dim_x)
a = a.astype(numpy.int32)
results=gpuSwitchtime(a,dim_x,dim_y,dim_z,usekernel="step",device=0)
gpuswitch=results[0]
step=step = [1]*5 +[-1]*5
#zero=[1]*5 +[0]+[-1]*5
cpuswitch=numpy.zeros((dim_y,dim_x),dtype=numpy.int32)
t3=time.time()
for i in range(0,dim_x):
for j in range(0,dim_y):
indice=(nd.convolve1d(a[:,j,i],step,mode='reflect')).argmin()
cpuswitch[j,i]=indice
t4=time.time()
tcpu=t4-t3
print ("CPU calculus done = %.4f s" %tcpu)
print "Difference : \n"
print gpuswitch-cpuswitch
print ("\nGPU is %d times faster than CPU " %(tcpu/results[1]))