-
Notifications
You must be signed in to change notification settings - Fork 2
/
writing_K_Nearest_Neighbors.py
65 lines (53 loc) · 1.83 KB
/
writing_K_Nearest_Neighbors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
from math import sqrt
# import matplotlib.pyplot as plt
import warnings
# from matplotlib import style
from collections import Counter
import pandas as pd
import random
# style.use('fivethirtyeight')
dataset = {'k':[[1,2], [2,3], [3,1]], 'r':[[6,5], [7,7], [8,6]]}
new_features = [5,7]
# [[plt.scatter(ii[0],ii[1], s=100, color=i) for ii in dataset[i]] for i in dataset]
# #above s=size
# plt.scatter(new_features[0],new_features[1])
# plt.show()
def k_nearest_neighbors(data, predict, k=3):
if len(data) >= k:
warings.warn('K is set to a value less than total voting groups!')
distances = []
for group in data:
for features in data[group]:
euclidean_distance = np.linalg.norm(np.array(features)-np.array(predict))
distances.append([euclidean_distance, group])
votes = [i[1] for i in sorted(distances)[:k]]
#print(Counter(votes).most_common(1))
vote_result = Counter(votes).most_common(1)[0][0]
return vote_result
df = pd.read_csv("breast-cancer-wisconsin.data.txt")
df.replace('?', -9999, inplace=True)
df.drop(['id'],1,inplace=True)
df.fillna(0 , inplace=True)
full_data = df.astype(float).values.tolist() #to convert everyting to float.
random.shuffle(full_data)
test_size = 0.2
train_set = {2:[], 4:[]}
test_set = {2:[], 4:[]}
train_data = full_data[:-int(test_size*len(full_data))]
test_data= full_data[-int(test_size*len(full_data)):]
for i in train_data:
train_set[i[-1]].append(i[:-1])
for i in test_data:
test_set[i[-1]].append(i[:-1])
correct = 0
total = 0
for group in test_set:
for data in test_set[group]:
vote = k_nearest_neighbors(train_set, data, k=5)
if group == vote:
correct +=1
total +=1
print('Accuracy {}'.format(correct/total))
# result = k_nearest_neighbors(dataset, new_features, k=3)
# print(result)