-
Notifications
You must be signed in to change notification settings - Fork 2
/
tf_neural_net_1.py
74 lines (48 loc) · 2.79 KB
/
tf_neural_net_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
#nodes for the hidden layers(it can be any number you want.)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10 #(cz ouput can be 0 to 9)
#this will make batches of the data and feed them one at a time.
batch_size = 100
x = tf.placeholder('float', [None, 784]) #([height, width(28*28)])
y = tf.placeholder('float')
def neural_network_model(data):
#input data * weights + biases
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([784, n_nodes_hl1])),
'biases' : tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases' : tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases' : tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases' : tf.Variable(tf.random_normal([n_classes]))}
layer1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases'])
layer1 = tf.nn.relu(layer1) # passing the value to activation function.
layer2 = tf.add(tf.matmul(layer1, hidden_2_layer['weights']), hidden_2_layer['biases'])
layer2 = tf.nn.relu(layer2) # passing the value to activation function.
layer3 = tf.add(tf.matmul(layer2, hidden_3_layer['weights']), hidden_3_layer['biases'])
layer3 = tf.nn.relu(layer3) # passing the value to activation function.
output = tf.matmul(layer3, output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = prediction,labels=y) )
optimizer = tf.train.AdamOptimizer().minimize(cost) #learning rate for AdamOptimizer=0.001
epochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict = {x: epoch_x, y: epoch_y})
epoch_loss +=c
print('Epoch', epoch, 'completed out of', epochs, 'loss:', epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:',accuracy.eval({x:mnist.test.images,y:mnist.test.labels}))
train_neural_network(x)