-
Notifications
You must be signed in to change notification settings - Fork 2
/
create_sentiments_featuresets.py
72 lines (58 loc) · 2.26 KB
/
create_sentiments_featuresets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import nltk
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer #to form group of similar words
import numpy as np
import random
import pickle
from collections import Counter
lemmatizer = WordNetLemmatizer()
lines = 10000000
def create_lexicon(pos,neg):
lexicon = []
for fi in [pos,neg]:
with open(fi,'r') as f:
contents = f.readlines()
for l in contents[:lines]:
all_words = word_tokenize(l.lower())
lexicon += list(all_words)
lexicon = [lemmatizer.lemmatize(i) for i in lexicon] #to limit the lexicon only with legit words
w_counts = Counter(lexicon)
l2 = []
#for words between count of 50 to 1000
for w in w_counts:
if 1000 > w_counts[w] > 50:
l2.append(w)
print(len(l2))
return l2
def sample_handling(sample, lexicon, classification):
featureset = []
with open(sample, 'r') as f:
contents = f.readlines()
for l in contents[:lines]:
current_words = word_tokenize(l.lower())
current_words = [lemmatizer.lemmatize(i) for i in current_words]
features = np.zeros(len(lexicon))
for word in current_words:
if word.lower() in lexicon:
index_value = lexicon.index(word.lower())
features[index_value] += 1
features = list(features)
featureset.append([features, classification])
return featureset
def create_feature_sets_and_labels(pos, neg, test_size=0.1):
lexicon = create_lexicon(pos,neg)
features = []
features += sample_handling('pos.txt',lexicon,[1,0])
features += sample_handling('neg.txt',lexicon,[0,1])
random.shuffle(features)
features = np.array(features)
testing_size = int(test_size*len(features))
train_x = list(features[:,0][:-testing_size])
train_y = list(features[:,1][:-testing_size])
test_x = list(features[:,0][-testing_size:])
test_y = list(features[:,1][-testing_size:])
return train_x, train_y, test_x, test_y
if __name__ == '__main__':
train_x,train_y, test_x, test_y = create_feature_sets_and_labels('pos.txt','neg.txt')
with open('sentiment_set.pickle','wb') as f:
pickle.dump([train_x,train_y, test_x, test_y], f)