-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_CUNET.py
495 lines (377 loc) · 16.3 KB
/
main_CUNET.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 24 15:47:54 2021
@author: Ding
"""
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 23 22:50:13 2021
@author: Ding
"""
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 23 17:08:09 2021
@author: Ding
"""
#main.py
import os
import time
import shutil
import argparse
import torch
import torch.nn as nn
import numpy as np
import resnet3d
import CU_Net3d
import torch.backends.cudnn as cudnn
from sklearn.model_selection import StratifiedKFold
from torch.utils.data.dataset import Dataset
import torch.multiprocessing as mp
#settings
parser = argparse.ArgumentParser(description='single brain region model')
parser.add_argument('--local_rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--epochs', default=300, type=int,
help='number of total epochs to run')
parser.add_argument('--batch_size',default=100, type=int,
help='batch size of all GPUs')
parser.add_argument('--lr',default=1e-3,type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float,
help='momentum')
parser.add_argument('--weight_decay',
default=1e-4,
type=float,
help='weight decay (default: 1e-4)')
parser.add_argument('-p', '--print-freq', default=10, type=int,
help='print frequency (default: 10)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('-a','--arch',default='resnet18',
help='model name')
#parser.add_argument('data', default=None, type=float,
# help='dataset, including train and test set and their labels, which will be segmented by K fold. ')
def reduced_mean(tensor, nprocs):
rt = tensor.clone()
torch.distributed.all_reduce(rt, op=torch.distributed.ReduceOp.SUM)
rt /= nprocs
return rt
def gather_tensor(tensor):
rt=[tensor.clone() for _ in range(torch.distributed.get_world_size()) ]
torch.distributed.all_gather(rt, tensor)
concat= torch.cat(rt,dim=0)
return concat
class InputDataset(Dataset):
def __init__(self,inputdata,inputlabel):
self.Data=inputdata
self.Label=inputlabel
def __getitem__(self, index):
data=self.Data[index]
label=self.Label[index]
return data, label
def __len__(self):
return len(self.Data)
class Main_Net(nn.Module):
def __init__(self, feature_extraction, classifier):
super(Main_Net, self).__init__()
self.feature_extraction=feature_extraction
self.classifier=classifier
def forward(self, x, y):
# print(x.shape)
# print(y.shape)
out=self.feature_extraction(x,y)
# print(out.shape)
out=self.classifier(out)
# print(out.shape)
return out
def main():
args = parser.parse_args()
args.nprocs = torch.cuda.device_count()
args.nprocs = 5
os.environ['CUDA_VISIBLE_DEVICES']='1,2,3,4,5'
os.environ['MASTER_ADDR'] ='124.16.75.175'
os.environ['MASTER_PORT'] = '12345'
data_path1='/home/ding/exp_2/data/Hippocampus_LAD_NC.npy'
data_path2='/home/ding/exp_2/data/Hippocampus_R_data.npy'
data1=np.load(data_path1)
data2=np.load(data_path2)
args.data1=data1
args.data2=data2
label=np.concatenate((np.ones([200,1],dtype=float),np.zeros([235,1],dtype=float)),0)
args.label=label
classifier=resnet3d.ResNet(resnet3d.BasicBlock, [1, 1, 1, 1],resnet3d.get_inplanes(),
n_input_channels=1,
conv1_t_size=27,
conv1_t_size2=27,
conv1_t_size3=20,
conv1_t_stride=1,
no_max_pool=False,
shortcut_type='B',
n_classes=2)
feature_extraction=CU_Net3d.CUNet()
total_model=Main_Net(feature_extraction, classifier)
mp.spawn(main_worker, nprocs=args.nprocs, args=(args.nprocs, args, total_model))
def main_worker(local_rank,nprocs, args, model):
args.local_rank = local_rank
torch.distributed.init_process_group(backend='nccl', world_size=args.nprocs, rank=local_rank)
torch.cuda.set_device(local_rank)
cudnn.benchmark = True
args.batch_size = int(args.batch_size / args.nprocs)
kf = StratifiedKFold(n_splits=5,shuffle=True,random_state=2021)
original_params=model.state_dict()
n_split=0
result_mat=np.zeros([5,7])
for train_idx, test_idx in kf.split(args.data1,args.label):
model.load_state_dict(original_params)
model.cuda(local_rank)
model_para = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
best_acc1= .0
criterion = nn.CrossEntropyLoss().cuda(local_rank)
optimizer = torch.optim.SGD(model_para.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
flatten_data=data_synthesize(args.data1,args.data2)
train_loader,test_loader,train_sampler,test_sampler= dataloader_preprocessing(train_idx,test_idx,args,flatten_data)
if args.evaluate:
validate(test_loader, model_para, criterion, local_rank, args)
return
for epoch in range(args.epochs):
train_sampler.set_epoch(epoch)
test_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch, args)
train(train_loader, model_para, criterion, optimizer, epoch, local_rank, args)
acc1 = validate(test_loader, model_para, criterion, local_rank, args)
is_best = acc1.Accuracy > best_acc1
best_acc1 = max(acc1.Accuracy, best_acc1)
if args.local_rank == 0:
save_checkpoint(
{
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model_para.module.state_dict(),
'best_acc1': best_acc1,
}, is_best)
result_path='/home/ding/exp_2/result/result_Hippocampus_CUNET_'+str(n_split)+'time.npy'
result_mat[n_split,0]=acc1.Accuracy
result_mat[n_split,1]=acc1.TPR
result_mat[n_split,2]=acc1.FPR
result_mat[n_split,3]=acc1.Precision
result_mat[n_split,4]=acc1.F1score
result_mat[n_split,5]=acc1.Kappa
n_split=n_split+1
np.save(result_path,result_mat)
def train(train_loader, model, criterion, optimizer, epoch, local_rank, args):
model.train()
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
Accuracy=AverageMeter('Accuracy', ':6.3f')
progress = ProgressMeter(len(train_loader), [batch_time, losses, Accuracy],
prefix="Epoch: [{}]".format(epoch))
end=time.time()
size1=args.data1.shape
size2=args.data2.shape
for i,(data,label) in enumerate(train_loader):
data_channel1=data[:,:size1[1]*size1[2]*size1[3]]
data_channel2=data[:,size1[1]*size1[2]*size1[3]:]
n_sample=data.shape[0]
data_channel1=data_channel1.reshape( n_sample,size1[1],size1[2],size1[3])
data_channel2=data_channel2.reshape( n_sample,size2[1],size2[2],size2[3])
data_channel1=data_channel1.unsqueeze(dim=1)
data_channel1 = data_channel1.type(torch.FloatTensor)
data_channel1=data_channel1.cuda(local_rank,non_blocking=True)
data_channel2=data_channel2.unsqueeze(dim=1)
data_channel2 = data_channel2.type(torch.FloatTensor)
data_channel2=data_channel2.cuda(local_rank,non_blocking=True)
label=label.squeeze()
label = label.type(torch.LongTensor)
label=label.cuda(local_rank,non_blocking=True)
output=model(data_channel1,data_channel2)
loss = criterion(output, label)
torch.distributed.barrier()
total_output=gather_tensor(output)
total_label=gather_tensor(label)
result=accuracy(total_output,total_label)
Accuracy.update(result.Accuracy)
reduced_loss = reduced_mean(loss, args.nprocs)
losses.update(reduced_loss.item(), data.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def data_synthesize(data1,data2):
n_sample=data1.shape[0]
x1=data1.shape[1]
y1=data1.shape[2]
z1=data1.shape[3]
data1_flatten=data1.reshape(n_sample,x1*y1*z1)
x2=data2.shape[1]
y2=data2.shape[2]
z2=data2.shape[3]
data2_flatten=data2.reshape(n_sample,x2*y2*z2)
data=np.concatenate((data1_flatten,data2_flatten),axis=1)
return data
def dataloader_preprocessing(train_idx,test_idx,args,data):
train_data=data[train_idx]
train_label=args.label[train_idx]
train_data=np.array(train_data)
train_label=np.array(train_label)
train_data=torch.from_numpy(train_data)
train_label=torch.from_numpy(train_label)
test_data=data[test_idx]
test_label=args.label[test_idx]
test_data=np.array(test_data)
test_label=np.array(test_label)
test_data=torch.from_numpy(test_data)
test_label=torch.from_numpy(test_label)
train_dataset = torch.utils.data.TensorDataset(train_data,train_label)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size,
num_workers=2,
pin_memory=True,
sampler=train_sampler)
test_dataset = torch.utils.data.TensorDataset(test_data,test_label)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=args.batch_size,
num_workers=2,
pin_memory=True,
sampler=test_sampler)
return train_loader, test_loader,train_sampler,test_sampler
def validate(test_loader, model, criterion, local_rank, args):
model.eval()
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
Accuracy= AverageMeter('Accuracy', ':6.3f')
progress = ProgressMeter(len(test_loader), [batch_time, losses, Accuracy ], prefix='Test: ')
with torch.no_grad():
end = time.time()
size1=args.data1.shape
size2=args.data2.shape
for i,(data,label) in enumerate(test_loader):
data_channel1=data[:,:size1[1]*size1[2]*size1[3]]
data_channel2=data[:,size1[1]*size1[2]*size1[3]:]
n_sample=data.shape[0]
data_channel1=data_channel1.reshape( n_sample,size1[1],size1[2],size1[3])
data_channel2=data_channel2.reshape( n_sample,size2[1],size2[2],size2[3])
data_channel1=data_channel1.unsqueeze(dim=1)
data_channel1 = data_channel1.type(torch.FloatTensor)
data_channel1=data_channel1.cuda(local_rank,non_blocking=True)
data_channel2=data_channel2.unsqueeze(dim=1)
data_channel2 = data_channel2.type(torch.FloatTensor)
data_channel2=data_channel2.cuda(local_rank,non_blocking=True)
label=label.squeeze()
label = label.type(torch.LongTensor)
label=label.cuda(local_rank,non_blocking=True)
output=model(data_channel1,data_channel2)
loss = criterion(output, label)
torch.distributed.barrier()
total_output=gather_tensor(output)
total_label=gather_tensor(label)
result=accuracy(total_output,total_label)
reduced_loss = reduced_mean(loss, args.nprocs)
losses.update(reduced_loss.item(), data.size(0))
batch_time.update(time.time() - end)
Accuracy.update(result.Accuracy)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
return result
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
class Result(object):
def __init__(self, Accuracy,TPR,FPR,Precision,Kappa,F1score):
self.Accuracy=Accuracy
self.TPR=TPR
self.FPR=FPR
self.Precision=Precision
self.Kappa=Kappa
self.F1score=F1score
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1**(epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output,label):
with torch.no_grad():
TP=0
TN=0
FP=0
FN=0
n_sample=output.shape[0]
for i in range(n_sample):
if (output[i,0]<output[i,1]) and (label[i]==1):
TP=TP+1
if (output[i,0]>output[i,1]) and (label[i]==0):
TN=TN+1
if (output[i,0]<output[i,1]) and (label[i]==0):
FP=FP+1
if (output[i,0]>output[i,1]) and (label[i]==1):
FN=FN+1
Accuracy = -1
TPR=-1
FPR=-1
Precision=-1
Recall=-1
F1score=-1
Pe=-1
Kappa=-1
if TP+TN+FP+FN !=0:
Accuracy=(TP+TN) / (TP+TN+FP+FN)
if TP+FN !=0:
TPR=TP/(TP+FN)
if FP+FN != 0:
FPR=FP/(FP+TN)
if TP+FP != 0:
Precision=TP/(TP+FP)
if TP+FN != 0:
Recall=TP/(TP+FN)
if Precision+Recall != 0:
F1score=(2*Precision*Recall)/(Precision+Recall)
if TP+TN+FP+FN != 0:
Pe=(TN+TP)/((TP+TN+FP+FN)**2)
if 1-Pe !=0:
Kappa=(Accuracy-Pe)/(1-Pe)
result=Result(Accuracy=Accuracy,TPR=TPR,FPR=FPR,Precision=Precision, Kappa=Kappa,F1score=F1score)
return result
if __name__ == '__main__':
main()