-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pca.py
74 lines (51 loc) · 2.44 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- encoding: utf-8 -*-
import numpy as np
class PCA(object):
"""Dimension Reduction using Principal Component Analysis (PCA)
It is the procces of computing principal components which explains the
maximum variation of the dataset using fewer components.
:type n_components: int, optional
:param n_components: Number of components to consider, if not set then
`n_components = min(n_samples, n_features)`, where
`n_samples` is the number of samples, and
`n_features` is the number of features (i.e.,
dimension of the dataset).
:Attributes:
:type covariance_: np.ndarray
:param covariance_: Coviarance Matrix
:type eig_vals_: np.ndarray
:param eig_vals_: Calculated Eigen Values
:type eig_vecs_: np.ndarray
:param eig_vecs_: Calculated Eigen Vectors
:type explained_variance_: np.ndarray
:param explained_variance_: Explained Variance of Each Principal Components
:type cum_explained_variance_: np.ndarray
:param cum_explained_variance_: Cumulative Explained Variables
"""
def __init__(self, n_components : int = None):
"""Default Constructor for Initialization"""
self.n_components = n_components
def fit_transform(self, X : np.ndarray, **kwargs):
"""
Fit the PCA algorithm into the Dataset
The input data is a n-dimensional vector of shape
`(<records>, <features>)` and the function transforms the
vector using the principles of PCA.
"""
verbose = kwargs.get("verbose", True)
if not self.n_components:
self.n_components = min(X.shape)
self.covariance_ = np.cov(X.T)
# calculate eigens
self.eig_vals_, self.eig_vecs_ = np.linalg.eig(self.covariance_)
# self.eig_pairs_ = [(np.abs(self.eig_vals_[i]), self.eig_vecs_[:, i]) for i in range(len(self.eig_vals_))]
# explained variance
_tot_eig_vals = sum(self.eig_vals_)
self.explained_variance_ = np.array([(i / _tot_eig_vals) * 100 for i in sorted(self.eig_vals_, reverse = True)])
self.cum_explained_variance_ = np.cumsum(self.explained_variance_)
# define `W` as `d x k`-dimension
self.W_ = self.eig_vecs_[:, :self.n_components]
if verbose:
# print the data shape to console when true
print(X.shape, self.W_.shape)
return X.dot(self.W_)