Skip to content

Latest commit

 

History

History
34 lines (30 loc) · 1.9 KB

HOWTO.md

File metadata and controls

34 lines (30 loc) · 1.9 KB

HOWTO

The template provides a minimal approach for getting started with an AI/ML project, and has hardly any dependencies required. However, the examples/BOILERPLATE.ipynb provides popular import and its configurations (like pandas, numpy, scikit-learn and tensorflow). A high level directory overview is as follows:

├───config          : store all configuration files/functions
│
├───data            : responsible for all data handling, or contains raw data
│   └───processed   : contains processed data (like combined/normalized dataframes, tables, etc.)
│
├───logs            : repository to contain log files, can also be saved in `/path/to/directory`
│
├───examples        : contains boilerplate notebook for EDA and quick data understanding/explanations
│
├───output          : directory responsible for all output files, useful for code development
│   ├───images      : save output images
│   └───savedmodels : save trained model files
│
├───src             : source directory
│   ├───agents      : define agents for any rnn application
│   ├───engine      : provides a suit of machine learning analytic functions
│   └───models      : directory containing model definations
│
├───static          : other important/useful resources required in the project
│   ├───fonts       : store additional fonts, maybe used in documentations
│   ├───images      : store explanatory images, maybe used in documentations and/or ipynb/markdowns
│   └───logo        : setup a project logo, purely useful for front layer applications can be safely ignored
│
└───utilities       : utilities directory containing functions and/or submodules, check readme for more information