forked from fudan-zvg/DeMo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
65 lines (57 loc) · 1.97 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import sys
import hydra
import pytorch_lightning as pl
from hydra.core.hydra_config import HydraConfig
from hydra.utils import instantiate
from pytorch_lightning.callbacks import (
LearningRateMonitor,
ModelCheckpoint,
RichModelSummary,
RichProgressBar,
)
from pytorch_lightning.loggers import TensorBoardLogger
@hydra.main(version_base=None, config_path="conf", config_name="config")
def main(conf):
pl.seed_everything(conf.seed, workers=True)
output_dir = HydraConfig.get().runtime.output_dir
logger = TensorBoardLogger(save_dir=output_dir, name="logs")
callbacks = [
ModelCheckpoint(
dirpath=os.path.join(output_dir, "checkpoints"),
filename="{epoch}",
monitor=f"{conf.monitor}",
mode="min",
save_top_k=conf.save_top_k,
save_last=True,
),
RichModelSummary(max_depth=1),
RichProgressBar(),
LearningRateMonitor(logging_interval="epoch"),
]
trainer = pl.Trainer(
logger=logger,
gradient_clip_val=conf.gradient_clip_val,
gradient_clip_algorithm=conf.gradient_clip_algorithm,
max_epochs=conf.epochs,
accelerator="gpu",
devices=conf.gpus,
strategy="ddp_find_unused_parameters_false",
callbacks=callbacks,
limit_train_batches=conf.limit_train_batches,
limit_val_batches=conf.limit_val_batches,
sync_batchnorm=conf.sync_bn,
)
model = instantiate(conf.model.target)
os.system('cp -a %s %s' % ('conf', output_dir))
os.system('cp -a %s %s' % ('src', output_dir))
with open(f'{output_dir}/model.txt', 'w') as f:
original_stdout = sys.stdout
sys.stdout = f
print(model)
sys.stdout = original_stdout
datamodule = instantiate(conf.datamodule.target)
trainer.fit(model, datamodule, ckpt_path=conf.checkpoint)
trainer.validate(model, datamodule.val_dataloader())
if __name__ == "__main__":
main()