-
Notifications
You must be signed in to change notification settings - Fork 26
/
622.DesignCircularQueue.py
112 lines (98 loc) · 4.03 KB
/
622.DesignCircularQueue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
Design your implementation of the circular queue. The circular queue is a
linear data structure in which the operations are performed based on FIFO
(First In First Out) principle and the last position is connected back to
the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the
spaces in front of the queue. In a normal queue, once the queue becomes
full, we cannot insert the next element even if there is a space in front
of the queue. But using the circular queue, we can use the space to store
new values.
Your implementation should support following operations:
MyCircularQueue(k): Constructor, set the size of the queue to be k.
Front: Get the front item from the queue. If the queue is empty, return -1.
Rear: Get the last item from the queue. If the queue is empty, return -1.
enQueue(value): Insert an element into the circular queue. Return true if
the operation is successful.
deQueue(): Delete an element from the circular queue. Return true if the
operation is successful.
isEmpty(): Checks whether the circular queue is empty or not.
isFull(): Checks whether the circular queue is full or not.
Example:
MyCircularQueue circularQueue = new MyCircularQueue(3);
// set the size to be 3
circularQueue.enQueue(1); // return true
circularQueue.enQueue(2); // return true
circularQueue.enQueue(3); // return true
circularQueue.enQueue(4); // return false, the queue is full
circularQueue.Rear(); // return 3
circularQueue.isFull(); // return true
circularQueue.deQueue(); // return true
circularQueue.enQueue(4); // return true
circularQueue.Rear(); // return 4
Note:
All values will be in the range of [0, 1000].
The number of operations will be in the range of [1, 1000].
Please do not use the built-in Queue library.
"""
#Difficulty: Medium
#52 / 52 test cases passed.
#Runtime: 100 ms
#Memory Usage: 14 MB
#Runtime: 100 ms, faster than 9.41% of Python3 online submissions for Design Circular Queue.
#Memory Usage: 14 MB, less than 5.26% of Python3 online submissions for Design Circular Queue.
class MyCircularQueue: # First time. Solved by myself without theory
def __init__(self, k: int):
self.k = k - 1
self.front = self.rear = -1
self.queue = [None] * k
def enQueue(self, value: int) -> bool:
r = False
if self.isFull():
return r
if self.rear == -1:
self.front += 1
self.rear += 1
self.queue[self.rear] = value
r = True
elif self.rear != self.k:
self.rear += 1
self.queue[self.rear] = value
r = True
elif self.rear == self.k and not self.isFull():
self.rear = 0
self.queue[self.rear] = value
r = True
return r
def deQueue(self) -> bool:
r = False
if self.front == -1 or self.isEmpty():
return r
elif self.front != self.k:
self.queue[self.front] = None
self.front += 1
if self.isEmpty():
self.front = -1
self.rear = -1
r = True
elif self.front == self.k and not self.isEmpty():
self.queue[self.front] = None
self.front = 0
r = True
return r
def Front(self) -> int:
if self.isEmpty():
self.front = -1
self.rear = -1
return self.front
return self.queue[self.front]
def Rear(self) -> int:
if self.isEmpty():
self.front = -1
self.rear = -1
return self.rear
return self.queue[self.rear]
def isEmpty(self) -> bool:
return True if self.queue.count(None) == self.k + 1 else False
def isFull(self) -> bool:
return True if None not in self.queue else False