-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
floyd-warshall.cpp
106 lines (96 loc) · 2.12 KB
/
floyd-warshall.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include <bits/stdc++.h>
using namespace std;
const int N = 500, OO = 1e9;
int dist[N][N];
//Initialize the distance matrix with infinities to indicate that there is no edge between nodes
void initialize_dist(int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
dist[i][j] = OO;
if (i == j) {
dist[i][j] = 0;
}
}
}
}
//Take Edge input and update the distance matrix
void input(int m) {
for (int i = 0; i < m; i++) {
int a, b, c;
cin >> a >> b >> c;
dist[a][b] = c;
dist[b][a] = c;
}
}
//Perform Floyd-Warshall algorithm to calculate all shortest paths
int floyd(int n) {
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (dist[i][j] > dist[i][k] + dist[k][j]) {
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}
}
}
//Take queries and output the shortest distance for each query
void output(int q) {
for (int i = 0; i < q; i++) {
int x, y;
cin >> x >> y;
cout << dist[x][y] << endl;
}
}
int main() {
int n, m, q;
cin >> n; // Number of nodes
initialize_dist(n);
cin >> m; // Number of edges
input(m);
floyd(n);
cin >> q; // Number of queries
output(q);
return 0;
}
/*
Time Complexity: O(n^3)
Memory Complexity: O(n^2)
*/
/*
Example:
5 // Number of nodes
10 // Number of edges
0 1 5 // Edge from Node 0 to Node 1 with Weight 5
0 2 3
0 3 4
0 4 1
1 2 4
1 3 1
1 4 1
2 3 1
2 4 2
3 4 4
10 // Number of Queries
0 1 // Print Minimum Path between Nodes 0 and 1
0 2
0 3
0 4
1 2
1 3
1 4
2 3
2 4
3 4
Output:
2 //Minimum path from 0 to 1
3 //Minimum path from 0 to 2
3 //Minimum path from 0 to 3
1 //Minimum path from 0 to 4
2 //Minimum path from 1 to 2
1 //Minimum path from 1 to 3
1 //Minimum path from 1 to 4
1 //Minimum path from 2 to 3
2 //Minimum path from 2 to 4
2 //Minimum path from 3 to 4
*/