forked from boostcampaitech5/level2_cv_datacentric-cv-10
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_seed.py
156 lines (127 loc) · 4.28 KB
/
train_seed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import math
import os
import os.path as osp
import random
import time
from argparse import ArgumentParser
from datetime import timedelta
import torch
from torch import cuda
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataset import SceneTextDataset
from east_dataset import EASTDataset
from model import EAST
def parse_args():
parser = ArgumentParser()
# Conventional args
parser.add_argument(
"--data_dir",
type=str,
default=os.environ.get("SM_CHANNEL_TRAIN", "../data/medical"),
)
parser.add_argument(
"--model_dir",
type=str,
default=os.environ.get("SM_MODEL_DIR", "trained_models3"),
)
parser.add_argument("--device", default="cuda" if cuda.is_available() else "cpu")
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--seed", type=int, default=2048) # ! for augmentation test
parser.add_argument("--image_size", type=int, default=2048)
parser.add_argument("--input_size", type=int, default=1024)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--learning_rate", type=float, default=1e-3)
parser.add_argument("--max_epoch", type=int, default=200) # ! for augmentation test
parser.add_argument("--save_interval", type=int, default=5)
parser.add_argument(
"--ignore_tags",
type=list,
default=["masked", "excluded-region", "maintable", "stamp"],
)
args = parser.parse_args()
if args.input_size % 32 != 0:
raise ValueError("`input_size` must be a multiple of 32")
return args
def seed_everything(seed):
import numpy as np
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def do_training(
data_dir,
model_dir,
device,
image_size,
input_size,
num_workers,
batch_size,
learning_rate,
max_epoch,
save_interval,
ignore_tags,
seed,
):
dataset = SceneTextDataset(
data_dir,
split="train",
image_size=image_size,
crop_size=input_size,
ignore_tags=ignore_tags,
)
dataset = EASTDataset(dataset)
num_batches = math.ceil(len(dataset) / batch_size)
train_loader = DataLoader(
dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers
)
torch.cuda.empty_cache()
seed_everything(seed)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = EAST()
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = lr_scheduler.MultiStepLR(
optimizer, milestones=[max_epoch // 2], gamma=0.1
)
model.train()
for epoch in range(max_epoch):
epoch_loss, epoch_start = 0, time.time()
with tqdm(total=num_batches) as pbar:
for img, gt_score_map, gt_geo_map, roi_mask in train_loader:
pbar.set_description("[Epoch {}]".format(epoch + 1))
loss, extra_info = model.train_step(
img, gt_score_map, gt_geo_map, roi_mask
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_val = loss.item()
epoch_loss += loss_val
pbar.update(1)
val_dict = {
"Cls loss": extra_info["cls_loss"],
"Angle loss": extra_info["angle_loss"],
"IoU loss": extra_info["iou_loss"],
}
pbar.set_postfix(val_dict)
scheduler.step()
print(
"Mean loss: {:.4f} | Elapsed time: {}".format(
epoch_loss / num_batches, timedelta(seconds=time.time() - epoch_start)
)
)
if (epoch + 1) % save_interval == 0:
if not osp.exists(model_dir):
os.makedirs(model_dir)
ckpt_fpath = osp.join(model_dir, "latest.pth")
torch.save(model.state_dict(), ckpt_fpath)
def main(args):
do_training(**args.__dict__)
if __name__ == "__main__":
args = parse_args()
main(args)