-
Notifications
You must be signed in to change notification settings - Fork 0
/
clstm.py
341 lines (236 loc) · 10.7 KB
/
clstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
# open text file and read in data as `text`
with open('data/anna.txt', 'r') as f:
text = f.read()
#encode the text and map each character to an integer and vice versa
# we create two dictonaries:
# 1. int2char, which maps integers to characters
# 2. char2int, which maps characters to unique integers
chars = tuple(set(text))
int2char = dict(enumerate(chars))
char2int = {ch: ii for ii, ch in int2char.items()}
encoded = np.array([char2int[ch] for ch in text])
int2char
text[:100]
encoded[:100]
def one_hot_encode(arr, n_labels):
# Initialize the the encoded array
one_hot = np.zeros((np.multiply(*arr.shape), n_labels), dtype=np.float32)
# Fill the appropriate elements with ones
one_hot[np.arange(one_hot.shape[0]), arr.flatten()] = 1.
# Finally reshape it to get back to the original array
one_hot = one_hot.reshape((*arr.shape, n_labels))
return one_hot
def get_batches(arr, n_seqs, n_steps):
'''Create a generator that returns batches of size
n_seqs x n_steps from arr.
Arguments
---------
arr: Array you want to make batches from
n_seqs: Batch size, the number of sequences per batch
n_steps: Number of sequence steps per batch
'''
batch_size = n_seqs * n_steps
n_batches = len(arr)//batch_size
# Keep only enough characters to make full batches
arr = arr[:n_batches * batch_size]
# Reshape into n_seqs rows
arr = arr.reshape((n_seqs, -1))
for n in range(0, arr.shape[1], n_steps):
# The features
x = arr[:, n:n+n_steps]
# The targets, shifted by one
y = np.zeros_like(x)
try:
y[:, :-1], y[:, -1] = x[:, 1:], arr[:, n+n_steps]
except IndexError:
y[:, :-1], y[:, -1] = x[:, 1:], arr[:, 0]
yield x, y
batches = get_batches(encoded, 10, 50)
x, y = next(batches)
print('x\n', x[:10, :10])
print('\ny\n', y[:10, :10])
class CharRNN(nn.Module):
def __init__(self, tokens, n_steps=100, n_hidden=256, n_layers=2,
drop_prob=0.5, lr=0.001):
super().__init__()
self.drop_prob = drop_prob
self.n_layers = n_layers
self.n_hidden = n_hidden
self.lr = lr
# Creating character dictionaries
self.chars = tokens
self.int2char = dict(enumerate(self.chars))
self.char2int = {ch: ii for ii, ch in self.int2char.items()}
## Define the LSTM
self.lstm = nn.LSTM(len(self.chars), n_hidden, n_layers,
dropout=drop_prob, batch_first=True)
## Define a dropout layer
self.dropout = nn.Dropout(drop_prob)
## Define the final, fully-connected output layer
self.fc = nn.Linear(n_hidden, len(self.chars))
# Initialize the weights
self.init_weights()
def forward(self, x, hc):
''' Forward pass through the network.
These inputs are x, and the hidden/cell state `hc`. '''
## Get x, and the new hidden state (h, c) from the lstm
x, (h, c) = self.lstm(x, hc)
## Ppass x through the dropout layer
x = self.dropout(x)
# Stack up LSTM outputs using view
#x = x.view(x.size()[0]*x.size()[1], self.n_hidden)
x = x.reshape(x.size()[0]*x.size()[1], self.n_hidden)
## Put x through the fully-connected layer
x = self.fc(x)
# Return x and the hidden state (h, c)
return x, (h, c)
def predict(self, char, h=None, cuda=False, top_k=None):
''' Given a character, predict the next character.
Returns the predicted character and the hidden state.
'''
if cuda:
self.cuda()
else:
self.cpu()
if h is None:
h = self.init_hidden(1)
x = np.array([[self.char2int[char]]])
x = one_hot_encode(x, len(self.chars))
inputs = torch.from_numpy(x)
if cuda:
inputs = inputs.cuda()
h = tuple([each.data for each in h])
out, h = self.forward(inputs, h)
p = F.softmax(out, dim=1).data
if cuda:
p = p.cpu()
if top_k is None:
top_ch = np.arange(len(self.chars))
else:
p, top_ch = p.topk(top_k)
top_ch = top_ch.numpy().squeeze()
p = p.numpy().squeeze()
char = np.random.choice(top_ch, p=p/p.sum())
return self.int2char[char], h
def init_weights(self):
''' Initialize weights for fully connected layer '''
initrange = 0.1
# Set bias tensor to all zeros
self.fc.bias.data.fill_(0)
# FC weights as random uniform
self.fc.weight.data.uniform_(-1, 1)
def init_hidden(self, n_seqs):
''' Initializes hidden state '''
# Create two new tensors with sizes n_layers x n_seqs x n_hidden,
# initialized to zero, for hidden state and cell state of LSTM
weight = next(self.parameters()).data
return (weight.new(self.n_layers, n_seqs, self.n_hidden).zero_(),
weight.new(self.n_layers, n_seqs, self.n_hidden).zero_())
if 'net' in locals():
del net
net = CharRNN(chars, n_hidden=512, n_layers=3)
print(net)
def train(net, data, epochs=10, n_seqs=10, n_steps=50, lr=0.001, clip=5, val_frac=0.1, cuda=False, print_every=10):
''' Training a network
Arguments
---------
net: CharRNN network
data: text data to train the network
epochs: Number of epochs to train
n_seqs: Number of mini-sequences per mini-batch, aka batch size
n_steps: Number of character steps per mini-batch
lr: learning rate
clip: gradient clipping
val_frac: Fraction of data to hold out for validation
cuda: Train with CUDA on a GPU
print_every: Number of steps for printing training and validation loss
'''
net.train()
opt = torch.optim.Adam(net.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
# create training and validation data
val_idx = int(len(data)*(1-val_frac))
data, val_data = data[:val_idx], data[val_idx:]
if cuda:
net.cuda()
counter = 0
n_chars = len(net.chars)
for e in range(epochs):
h = net.init_hidden(n_seqs)
for x, y in get_batches(data, n_seqs, n_steps):
counter += 1
# One-hot encode our data and make them Torch tensors
x = one_hot_encode(x, n_chars)
inputs, targets = torch.from_numpy(x), torch.from_numpy(y)
if cuda:
inputs, targets = inputs.cuda(), targets.cuda()
# Creating new variables for the hidden state, otherwise
# we'd backprop through the entire training history
h = tuple([each.data for each in h])
net.zero_grad()
output, h = net.forward(inputs, h)
loss = criterion(output, targets.view(n_seqs*n_steps).type(torch.cuda.LongTensor))
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
nn.utils.clip_grad_norm_(net.parameters(), clip)
opt.step()
if counter % print_every == 0:
# Get validation loss
val_h = net.init_hidden(n_seqs)
val_losses = []
for x, y in get_batches(val_data, n_seqs, n_steps):
# One-hot encode our data and make them Torch tensors
x = one_hot_encode(x, n_chars)
x, y = torch.from_numpy(x), torch.from_numpy(y)
# Creating new variables for the hidden state, otherwise
# we'd backprop through the entire training history
val_h = tuple([each.data for each in val_h])
inputs, targets = x, y
if cuda:
inputs, targets = inputs.cuda(), targets.cuda()
output, val_h = net.forward(inputs, val_h)
val_loss = criterion(output, targets.view(n_seqs*n_steps).type(torch.cuda.LongTensor))
val_losses.append(val_loss.item())
print("Epoch: {}/{}...".format(e+1, epochs),
"Step: {}...".format(counter),
"Loss: {:.4f}...".format(loss.item()),
"Val Loss: {:.4f}".format(np.mean(val_losses)))
n_seqs, n_steps = 128, 100
train(net, encoded, epochs=25, n_seqs=n_seqs, n_steps=n_steps, lr=0.001, cuda=True, print_every=10)
# change the name, for saving multiple files
model_name = 'rnn_3_layer.net'
checkpoint = {'n_hidden': net.n_hidden,
'n_layers': net.n_layers,
'state_dict': net.state_dict(),
'tokens': net.chars}
with open(model_name, 'wb') as f:
torch.save(checkpoint, f)
def sample(net, size, prime='The', top_k=None, cuda=False):
if cuda:
net.cuda()
else:
net.cpu()
net.eval()
# First off, run through the prime characters
chars = [ch for ch in prime]
h = net.init_hidden(1)
for ch in prime:
char, h = net.predict(ch, h, cuda=cuda, top_k=top_k)
chars.append(char)
# Now pass in the previous character and get a new one
for ii in range(size):
char, h = net.predict(chars[-1], h, cuda=cuda, top_k=top_k)
chars.append(char)
return ''.join(chars)
print(sample(net, 2000, prime='Anna', top_k=5, cuda=True))
# Here we have loaded in a model that trained over 1 epoch `rnn_1_epoch.net`
with open(model_name, 'rb') as f:
checkpoint = torch.load(f)
loaded = CharRNN(checkpoint['tokens'], n_hidden=checkpoint['n_hidden'], n_layers=checkpoint['n_layers'])
loaded.load_state_dict(checkpoint['state_dict'])
# Change cuda to True if you are using GPU!
print(sample(loaded, 2000, cuda=True, top_k=5, prime="And Levin said"))