This project is based on the university class (hannam.ac.kr).
basic paper : https://www.researchgate.net/publication/323587302_A_Deep_Learning_SAR_Target_Classification_Experiment_on_MSTAR_Dataset
Make same accuracy as basic paper (91%)
SAR data has many features magnitude, real, imaginary.
Traditionary researcher uses only magnitude datas.
but in this paper, using all feature affects on accuracy
SAR : https://en.wikipedia.org/wiki/Synthetic-aperture_radar
Only Magnitude data : 88 %
All data : 91 %
Epoch : 40
Batch Size : 32
learning Rate : 0.001
Loss Function : MultiLabelSoftMarginLoss(with Softmax Layer)
Optimizer : Adam
random seed : 77
Model : CNN