-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
41 lines (30 loc) · 1.17 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from PIL import Image
def load_image(filename, size=None, scale=None):
img = Image.open(filename).convert('RGB')
if size is not None:
img = img.resize((size[0], size[1]), Image.ANTIALIAS)
if scale is not None:
img = img.resize((int(img.size[0] / scale), int(img.size[1] / scale)), Image.ANTIALIAS)
return img
def save_image(filename, data):
img = data.clone().clamp(0, 255).numpy()
img = img.transpose(1, 2, 0).astype("uint8")
img = Image.fromarray(img)
img.save(filename)
def gram_matrix(y):
(b, ch, h, w) = y.size()
features = y.view(b, ch, w * h)
features_t = features.transpose(1, 2)
gram = features.bmm(features_t) / (ch * h * w)
return gram
def tv_loss(img):
# Calculate total variation loss
tv_x = (img[:, :, :, :-1] - img[:, :, :, 1:]).mean()
tv_y = (img[:, :, :-1, :] - img[:, :, 1:, :]).mean()
return 1/2 * (tv_x**2 + tv_y**2)
def normalize_batch(batch):
# normalize using imagenet mean and std
mean = batch.new_tensor([0.485, 0.456, 0.406]).view(-1, 1, 1)
std = batch.new_tensor([0.229, 0.224, 0.225]).view(-1, 1, 1)
batch = batch.div(255.0)
return (batch - mean) / std