Skip to content

Latest commit

 

History

History
169 lines (136 loc) · 6.53 KB

README.md

File metadata and controls

169 lines (136 loc) · 6.53 KB

JXPerf

Java inefficiency detection tool based on CPU performance monitoring counters and hardware debug registers. The tool detects dead writes, silent stores, redundant loads, and memory bloat.

build master Codacy Badge license

Contents

Installation

Linux

1. Installation Prerequisites

  • Install Oracle/OpenJDK and Apache Maven.
  • Install libnuma library
  • Install python modules: bintrees and google-api-python-client
  • Turn on PMU sampling in your environment:sysctl -w kernel.perf_event_paranoid=1
  • cp set_env.template set_env
  • Modify set_env to make JXPerf_HOME, JAVA_HOME and MAVEN_HOME point to your JXPerf, Java and Maven home.
  • source set_env

2. Installation

$ make

3. Uninstallation

$ make clean

Usage

Linux

1. To run dead store detection

  • Start Profiler
$ LD_PRELOAD=$JXPerf_HOME/build/preload/libpreload.so java -agentpath:$JXPerf_HOME/build/libagent.so=DeadStore::MEM_UOPS_RETIRED:ALL_STORES:precise=2@<sampling rate> -cp <classpath> <java program>
  • Generate profiling results "agent-data"
$ python $JXPerf_HOME/script/process_raw_data.py

2. To run silent store detection

  • Start Profiler
$ LD_PRELOAD=$JXPerf_HOME/build/preload/libpreload.so java -agentpath:$JXPerf_HOME/build/libagent.so=SilentStore::MEM_UOPS_RETIRED:ALL_STORES:precise=2@<sampling rate> -cp <classpath> <java program>
  • Generate profiling results "agent-data"
$ python $JXPerf_HOME/script/process_raw_data.py

3. To run silent load detection

  • Start Profiler
$ LD_PRELOAD=$JXPerf_HOME/build/preload/libpreload.so java -agentpath:$JXPerf_HOME/build/libagent.so=SilentLoad::MEM_UOPS_RETIRED:ALL_LOADS:precise=2@<sampling rate> -cp <classpath> <java program>
  • Generate profiling results "agent-data"
$ python $JXPerf_HOME/script/process_raw_data.py

4. To run data centric analysis

  • Start Profiler
$ LD_PRELOAD=$JXPerf_HOME/build/preload/libpreload.so java -javaagent:$JAVA_AGENT -agentpath:$JXPerf_HOME/build/libagent.so=DataCentric::MEM_LOAD_UOPS_RETIRED:L1_MISS:precise=2@<sampling rate> -cp <classpath> <java program>
  • Generate profiling results "agent-data"
$ python $JXPerf_HOME/script/process_raw_data.py
  • The "agent_data" includes two metrics: "Allocation Times" and "L1 Cache Misses"
    • The metric "Allocation Times" reports allocation times for every object, which is represented with the object allocation site

    • The metric "L1 Cache Misses" reports a pair of calling context (i.e., <allocation site, access site>) for every object incurring L1 cache misses

    • To analyze memory bloat

      • Identify the objects suffering from high L1 cache misses by looking into the metric "L1 Cache Misses"
      • Check whether these objects have high allocation times by looking into the metric "Allocation Times"
      • The objects having both high L1 cache misses and allocation times are primary optimization candidates

5. To run NUMA locality analysis

  • Start Profiler
$ LD_PRELOAD=$JXPerf_HOME/build/preload/libpreload.so java -javaagent:$JAVA_AGENT -agentpath:$JXPerf_HOME/build/libagent.so=Numa::MEM_LOAD_UOPS_RETIRED:L1_MISS:precise=2@<sampling rate> -cp <classpath> <java program>
  • Generate profiling results "agent-data"
$ python $JXPerf_HOME/script/process_raw_data.py
  • The "agent_data" includes:
    • "Fraction of Mismatch": mismatch times of one object over the total mismatch times of whole program
    • "Match Times" and "Mismatch Times": the match and mismatch times of one object
    • "Match Percentage": Match Times / (Match Times + Mismatch Times)
    • "Mismatch Percentage": Mismatch Times / (Match Times + Mismatch Times)

6. To run with generic PMU events

  • Start Profiler
$ LD_PRELOAD=$JXPerf_HOME/build/preload/libpreload.so java -agentpath:$JXPerf_HOME/build/libagent.so=Generic::PMU_Events:precise=2@<sampling rate> -cp <classpath> <java program>
  • Generate profiling results "agent-data"
$ python $JXPerf_HOME/script/process_raw_data.py

7. To run heap profiling

  • Start Profiler
$ LD_PRELOAD=$JXPerf_HOME/build/preload/libpreload.so java -agentpath:$JXPerf_HOME/build/libagent.so=Heap -cp <classpath> <java program>
  • Generate profiling results "agent-data"
$ python $JXPerf_HOME/script/process_raw_data.py

8. Attach to a running JVM

  • Open run_attach.sh and change MODE to one of below modes:
    • DataCentric::MEM_LOAD_UOPS_RETIRED:L1_MISS:precise=2@sampling_rate
    • DeadStore::MEM_UOPS_RETIRED:ALL_STORES:precise=2@sampling_rate
    • SilentStore::MEM_UOPS_RETIRED:ALL_STORES:precise=2@sampling_rate
    • SilentLoad::MEM_UOPS_RETIRED:ALL_LOADS:precise=2@sampling_rate
  • Start Profiler
$ ./run_attach.sh <running time in seconds> <pid>

VS Code GUI

  • In VS Code, search for DrCCTProf Viewer extension and install it
  • Generate the drcctprof format profile (test.drcctprof):$JXPerf_HOME/script/process_raw_data_to_vscode.py <source code foler>
  • View the test.drcctprof in VS Code:code test.drcctprof

Support Platforms

We tested our tool on following platforms.

Linux

CPU Systems Kernel Architecture
Intel(R) Xeon(R) CPU E5-2650 v4 Ubuntu 14.04.6 Linux 5.1.0 x86_64
Intel(R) Xeon(R) CPU E5-2699 v3 Ubuntu 18.04.3 Linux 5.4.6 x86_64
Intel(R) Xeon(R) CPU E7-4830 v4 CentOS Linux 7 Linux 3.10.0 x86_64

Support JDK Versions

JDK

JDK Versions
JDK 11 & later
OpenJDK 11 & later

License

JXPerf is released under the MIT License.