-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
155 lines (124 loc) · 5.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import copy
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
from collections import deque
from envs import create_atari_env
from model import ActorCritic
from regularization import MaxDivideMin
from regularization import MaxMinusMin
def ensure_shared_grads(model, shared_model):
for param, shared_param in zip(model.parameters(),
shared_model.parameters()):
if shared_param.grad is not None:
return
shared_param._grad = param.grad
def train(rank, args, shared_model, counter, lock, logger, optimizer=None):
if args.save_sigmas:
sigmas_f = logger.init_one_sigmas_file(rank)
torch.manual_seed(args.seed + rank)
env = create_atari_env(args.env_name)
env.seed(args.seed + rank)
model = ActorCritic(env.observation_space.shape[0], env.action_space)
if optimizer is None:
optimizer = optim.Adam(shared_model.parameters(), lr=args.lr)
if args.add_rank_reg:
if args.rank_reg_type == "maxdividemin":
rank_reg = MaxDivideMin.apply
elif args.rank_reg_type == "maxminusmin":
rank_reg = MaxMinusMin.apply
model.train()
state = env.reset()
state = torch.from_numpy(state)
done = True
local_counter = 0
episode_length = 0
while True:
if args.max_counter_num != 0 and counter.value > args.max_counter_num:
exit(0)
# Sync with the shared model
model.load_state_dict(shared_model.state_dict())
if done:
cx = Variable(torch.zeros(1, 256))
hx = Variable(torch.zeros(1, 256))
else:
cx = Variable(cx.data)
hx = Variable(hx.data)
values = []
log_probs = []
rewards = []
entropies = []
if args.add_rank_reg:
hiddens = [None] * 2 # 0: last layer, 1: last last layer
for step in range(args.num_steps):
episode_length += 1
model_inputs = (Variable(state.unsqueeze(0)), (hx, cx))
if args.add_rank_reg:
value, logit, (hx, cx), internal_features = model(model_inputs, return_features=True)
else:
value, logit, (hx, cx) = model(model_inputs)
prob = F.softmax(logit, dim=1)
log_prob = F.log_softmax(logit, dim=1)
entropy = -(log_prob * prob).sum(1, keepdim=True)
entropies.append(entropy)
if args.add_rank_reg:
if hiddens[0] is None:
hiddens[0] = internal_features[-1]
hiddens[1] = internal_features[-2]
else:
hiddens[0] = torch.cat([hiddens[0], internal_features[-1]])
hiddens[1] = torch.cat([hiddens[1], internal_features[-2]])
action = prob.multinomial(num_samples=1).data
log_prob = log_prob.gather(1, Variable(action))
state, reward, done, _ = env.step(action.numpy())
done = done or episode_length >= args.max_episode_length
reward = max(min(reward, 1), -1)
local_counter += 1
with lock:
if local_counter % 20 == 0:
counter.value += 20
if done:
episode_length = 0
state = env.reset()
state = torch.from_numpy(state)
values.append(value)
log_probs.append(log_prob)
rewards.append(reward)
if done:
break
R = torch.zeros(1, 1)
if not done:
value, _, _ = model((Variable(state.unsqueeze(0)), (hx, cx)))
R = value.data
values.append(Variable(R))
policy_loss = 0
value_loss = 0
R = Variable(R)
gae = torch.zeros(1, 1)
for i in reversed(range(len(rewards))):
R = args.gamma * R + rewards[i]
advantage = R - values[i]
value_loss = value_loss + 0.5 * advantage.pow(2)
# Generalized Advantage Estimataion
delta_t = args.gamma * values[i + 1].data - values[i].data + rewards[i]
gae = gae * args.gamma * args.tau + delta_t
policy_loss = policy_loss - \
log_probs[i] * Variable(gae) - args.entropy_coef * entropies[i]
total_loss = policy_loss + args.value_loss_coef * value_loss
# internal layers regularizer
retain_graph = None
if args.add_rank_reg:
current_rankreg_coef = args.rank_reg_coef
# total_loss = total_loss + rank_reg(hiddens[0], args.rank_reg_coef)
if args.save_sigmas and local_counter % args.save_sigmas_every <= 3:
norm = rank_reg(hiddens[0], current_rankreg_coef, counter.value, sigmas_f, logger)
else:
norm = rank_reg(hiddens[0], current_rankreg_coef)
total_loss = total_loss + norm
optimizer.zero_grad()
total_loss.backward(retain_graph=retain_graph)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
ensure_shared_grads(model, shared_model)
optimizer.step()