-
Notifications
You must be signed in to change notification settings - Fork 6
/
videocap_mplug.py
268 lines (217 loc) · 9.8 KB
/
videocap_mplug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import argparse
import sys
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from models.model_caption_mplug_vatex import MPLUG
from models.vit import interpolate_pos_embed, resize_pos_embed
from models.tokenization_bert import BertTokenizer
import utils
from dataset.utils import save_result
from dataset import create_dataset, create_sampler, create_loader, nocaps_collate_fn
from scheduler import create_scheduler
from optim import create_optimizer, create_two_optimizer
import language_evaluation
@torch.no_grad()
def evaluation(model, data_loader, tokenizer, device, config, test_submit=False):
# test
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Generate Vatex Cap test result:'
print_freq = 2
result = []
answer_input = None
for n, (video, video_ids) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
if config['prompt'] != "":
caption = [config['prompt'] + config['eos']] * video.size(0)
caption = tokenizer(caption, padding='longest', truncation=True, max_length=args.max_input_length,
return_tensors="pt").to(device)
else:
caption = None
# print (caption.input_ids.size())
# image = image.to(device,non_blocking=True)
topk_ids, topk_probs = model(video, caption, None, train=False, device=device)
for image_id, topk_id, topk_prob in zip(video_ids, topk_ids, topk_probs):
ans = tokenizer.decode(topk_id[0]).replace("[SEP]", "").replace("[CLS]", "").replace("[PAD]", "").strip()
ans += ' .'
if test_submit:
# print (image_id, int(image_id.replace(".jpg", "").split("_")[-1]))
result.append({image_id: ans})
else:
result.append({"question_id": image_id, "pred_caption": ans, "gold_caption": gold_caption_list})
return result
@torch.no_grad()
def cal_metric(result_file):
result_list = json.load(open(result_file, "r"))
predicts = []
answers = []
for each in result_list:
predicts.append(each["pred_caption"])
answers.append(each["gold_caption"])
evaluator = language_evaluation.CocoEvaluator(verbose=False)
results = evaluator.run_evaluation(predicts, answers)
print(len(result_list), results)
return results
@torch.no_grad()
def proces_res_file(submission_path, ref_path):
submission = json.load(open(submission_path))
ref_data = json.load(open(ref_path))
vid_refs_list = []
for item in ref_data:
vid = item['videoID']
ref_caps = item['enCap']
pred_cap = submission[vid]
vid_item_data = {'vid': vid,
'pred_caption': pred_cap,
'gold_captoin': ref_caps}
vid_refs_list.append(vid_item_data)
return vid_refs_list
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
warmup_steps = config['schedular']['warmup_epochs']
#### Dataset ####
print("Creating vatex_video_caps datasets")
datasets = [create_dataset('vatex_video_caps', config)]
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [False], num_tasks, global_rank)
else:
samplers = [None, ]
test_loader = create_loader(datasets, samplers,
batch_size=[config['batch_size_test']],
num_workers=[8], is_trains=[False], collate_fns=[nocaps_collate_fn])[0]
tokenizer = BertTokenizer.from_pretrained(args.text_encoder)
#### Model ####
print("Creating model")
model = MPLUG(config=config, tokenizer=tokenizer)
model = model.to(device)
if not args.do_two_optim:
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
else:
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_two_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
if args.do_amp:
from apex import amp
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
try:
state_dict = checkpoint['model']
except:
state_dict = checkpoint['module']
# reshape positional embedding to accomodate for image resolution change
if config["clip_name"] == "ViT-B-16":
num_patches = int(config["image_res"] * config["image_res"] / (16 * 16))
elif config["clip_name"] == "ViT-L-14":
num_patches = int(config["image_res"] * config["image_res"] / (14 * 14))
pos_embed = nn.Parameter(torch.zeros(num_patches + 1, 768).float())
pos_embed = resize_pos_embed(state_dict['visual_encoder.visual.positional_embedding'].unsqueeze(0),
pos_embed.unsqueeze(0))
state_dict['visual_encoder.visual.positional_embedding'] = pos_embed
for key in list(state_dict.keys()):
if ('fusion' in key or 'bert' in key) and 'decode' not in key:
encoder_key = key.replace('fusion.', '').replace('bert.', '')
state_dict[encoder_key] = state_dict[key]
del state_dict[key]
msg = model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % args.checkpoint)
print(msg)
model_without_ddp = model
if args.distributed:
# model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
import apex
model = apex.parallel.DistributedDataParallel(model, delay_allreduce=True)
model_without_ddp = model.module
print("Start training")
start_time = time.time()
vqa_result = evaluation(model, test_loader, tokenizer, device, config, test_submit=True)
result_file = save_result(vqa_result, args.result_dir, 'vatex_video_caps_test')
dist.barrier()
data = json.load(open(result_file))
submission = {}
for item in data:
for key, value in item.items():
submission[key] = value
new_submission = {}
for k, v in submission.items():
if 'a picture of' in v:
v = v.split('a picture of ')[-1]
if 'a video of' in v:
v = v.split('a video of ')[-1]
elif 'a video clip of' in v:
v = v.split('a video clip of ')[-1]
elif 'a video showing' in v:
v = v.split('a video showing ')[-1]
elif 'a video tutorial on' in v:
v = v.split('a video tutorial on ')[-1]
new_submission[k] = v
# you can sumbit to the vatex website for online evaluation
submission_path = os.path.join(args.result_dir, 'submission.json')
json.dump(new_submission, open(submission_path, 'w'))
# offline evaluation
vid_refs_list = proces_res_file(submission_path, config['ref_path'])
result_file = os.path.join(args.result_dir, 'result.json')
json.dump(vid_refs_list, open(result_file, 'w'))
result = cal_metric(result_file)
sys.exit()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/VQA.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--output_dir', default='output/vqa')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--text_encoder', default='bert-base-uncased')
parser.add_argument('--text_decoder', default='bert-base-uncased')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--min_length', default=10, type=int)
parser.add_argument('--lr', default=2e-5, type=float)
parser.add_argument('--max_length', default=30, type=int)
parser.add_argument('--max_input_length', default=25, type=int)
parser.add_argument('--beam_size', default=5, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--do_two_optim', action='store_true')
parser.add_argument('--lr1', default=2e-5, type=float)
parser.add_argument('--lr2', default=5e-6, type=float)
parser.add_argument('--do_amp', action='store_true')
parser.add_argument('--no_init_decocde', action='store_true')
parser.add_argument('--do_accum', action='store_true')
parser.add_argument('--accum_steps', default=4, type=int)
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
args.result_dir = os.path.join(args.output_dir, 'result')
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
config["min_length"] = args.min_length
config["max_length"] = args.max_length
config["beam_size"] = args.beam_size
config['text_encoder'] = args.text_encoder
config['text_decoder'] = args.text_decoder
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)