-
Notifications
You must be signed in to change notification settings - Fork 275
/
pkg_usage.py
62 lines (57 loc) · 1.8 KB
/
pkg_usage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
import urllib
import time
import cv2
from yolact_edge.inference import YOLACTEdgeInference
weights = "yolact_edge_resnet50_54_800000.pth"
# All available model configs, depends on which weights
# you use. More info could be found in data/config.py.
model_configs = [
'yolact_edge_mobilenetv2_config',
'yolact_edge_vid_config',
'yolact_edge_vid_minimal_config',
'yolact_edge_vid_trainflow_config',
'yolact_edge_youtubevis_config',
'yolact_resnet50_config',
'yolact_resnet152_config',
'yolact_edge_resnet50_config',
'yolact_edge_vid_resnet50_config',
'yolact_edge_vid_trainflow_resnet50_config',
'yolact_edge_youtubevis_resnet50_config',
]
config = model_configs[5]
# All available model datasets, depends on which weights
# you use. More info could be found in data/config.py.
datasets = [
'coco2014_dataset',
'coco2017_dataset',
'coco2017_testdev_dataset',
'flying_chairs_dataset',
'youtube_vis_dataset',
]
dataset = datasets[1]
# Used tensorrt calibration
calib_images = "./data/calib_images"
# Override some default configuration
config_ovr = {
'use_fast_nms': True, # Does not work with regular nms
'mask_proto_debug': False
}
model_inference = YOLACTEdgeInference(
weights, config, dataset, calib_images, config_ovr)
img = None
try:
with urllib.request.urlopen("http://images.cocodataset.org/val2017/000000439715.jpg") as f:
img = np.asarray(bytearray(f.read()), dtype="uint8")
img = cv2.imdecode(img, cv2.IMREAD_COLOR)
except:
pass
if img is None:
print("Couldn't retrieve image for benchmark...")
exit(1)
print("Benchmarking performance...")
start = time.time()
samples = 200
for i in range(samples):
p = model_inference.predict(img, False)
print(f"Average {1 / ( (time.time() - start) / samples )} FPS")