-
Notifications
You must be signed in to change notification settings - Fork 7
/
tune_fully_after_mix_tune.py
401 lines (355 loc) · 14.5 KB
/
tune_fully_after_mix_tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import os
import math
import time
import json
import shutil
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset
from torch.optim.lr_scheduler import CosineAnnealingLR
from sklearn.feature_selection import mutual_info_classif, mutual_info_regression
from sklearn.linear_model import LinearRegression, LogisticRegression
from category_encoders import CatBoostEncoder
import optuna
from bin import ExcelFormer
from lib import Transformations, build_dataset, prepare_tensors, make_optimizer, DATA
DATASETS = [
'analcatdata_supreme', 'isolet', 'cpu_act', 'visualizing_soil', 'yprop_4_1', 'gesture', 'churn', 'sulfur', 'bank-marketing', 'Brazilian_houses'
'eye', 'MagicTelescope', 'Ailerons', 'pol', 'polv2', 'credit', 'california', 'house_sales', 'house', 'diamonds', 'helena', 'jannis', 'higgs-small',
'road-safety', 'medical_charges', 'SGEMM_GPU_kernel_performance', 'covtype', 'nyc-taxi-green-dec-2016'
]
def get_training_args():
parser = argparse.ArgumentParser()
parser.add_argument("--output", type=str, default='config/ExcelFormer/fully_tuned')
parser.add_argument("--dataset", type=str)
parser.add_argument("--normalization", type=str, default='quantile')
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--early_stop", type=int, default=32, help='set a smaller early stop for fast hyper-tune or a larger for better performance, 32 is used in this paper')
args = parser.parse_args()
args.output = f'{args.output}/{args.dataset}'
if not os.path.isdir(args.output):
os.makedirs(args.output)
# some basic model configuration
cfg = {
"model": {
"prenormalization": True, # true or false, perform BETTER on a few datasets with no prenormalization
'kv_compression': None,
'kv_compression_sharing': None,
'token_bias': True
},
"training": {
"max_epoch": 500,
"optimizer": "adamw",
}
}
# alpha tuned config
cfg_file = f'config/ExcelFormer/mix_tuned/{args.dataset}/cfg.json'
assert os.path.exists(cfg_file), 'need mix tuning first for further fully tuning'
with open(cfg_file, 'r') as f:
tuned_cfg = json.load(f)
cfg['model'].update(tuned_cfg['model'])
cfg['training'].update(tuned_cfg['training'])
cfg['mixup'] = tuned_cfg['mixup']
return args, cfg
def seed_everything(seed=42):
'''
Sets the seed of the entire notebook so results are the same every time we run.
This is for REPRODUCIBILITY.
'''
random.seed(seed)
# Set a fixed value for the hash seed
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# When running on the CuDNN backend, two further options must be set
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
"""args"""
device = torch.device('cuda')
args, cfg = get_training_args()
seed_everything(args.seed)
""" prepare Datasets and Dataloaders """
assert args.dataset in DATASETS
T_cache = False # save data preprocessing cache
normalization = args.normalization if args.normalization != '__none__' else None
transformation = Transformations(normalization=normalization)
dataset = build_dataset(DATA / args.dataset, transformation, T_cache)
if dataset.X_num['train'].dtype == np.float64:
dataset.X_num = {k: v.astype(np.float32) for k, v in dataset.X_num.items()}
# convert categorical features to numerical features with CatBoostEncoder
if dataset.X_cat is not None:
cardinalities = dataset.get_category_sizes('train')
enc = CatBoostEncoder(
cols=list(range(len(cardinalities))),
return_df=False
).fit(dataset.X_cat['train'], dataset.y['train'])
for k in ['train', 'val', 'test']:
# 1: directly regard catgorical features as numerical
dataset.X_num[k] = np.concatenate([enc.transform(dataset.X_cat[k]).astype(np.float32), dataset.X_num[k]], axis=1)
d_out = dataset.n_classes or 1
X_num, X_cat, ys = prepare_tensors(dataset, device=device)
X_cat = None # if use CatBoostEncoder then drop original categorical features
""" ORDER numerical features with MUTUAL INFORMATION """
mi_cache_dir = 'cache/mi'
if not os.path.isdir(mi_cache_dir):
os.makedirs(mi_cache_dir)
mi_cache_file = f'{mi_cache_dir}/{args.dataset}.npy' # cache to save mutual information
if os.path.exists(mi_cache_file):
mi_scores = np.load(mi_cache_file)
else:
mi_func = mutual_info_regression if dataset.is_regression else mutual_info_classif
mi_scores = mi_func(dataset.X_num['train'], dataset.y['train']) # calculate MI
np.save(mi_cache_file, mi_scores)
mi_ranks = np.argsort(-mi_scores)
# reorder the feature with mutual information ranks
X_num = {k: v[:, mi_ranks] for k, v in X_num.items()}
# normalized mutual information for loss weight
sorted_mi_scores = torch.from_numpy(mi_scores[mi_ranks] / mi_scores.sum()).float().to(device)
""" END FEATURE REORDER """
# set batch size
batch_size_dict = {
'churn': 128, 'eye': 128, 'gesture': 128, 'california': 256, 'house': 256,
'higgs-small': 512, 'helena': 512, 'jannis': 512, 'covtype': 1024
} # batch size settings for datasets in FT-Transformer(Borisov et al., 2021)
if args.dataset in batch_size_dict:
batch_size = batch_size_dict[args.dataset]
val_batch_size = 512
else:
# batch size settings for datasets in (Grinsztajn et al., 2022)
if dataset.n_features <= 32:
batch_size = 512
val_batch_size = 8192
elif dataset.n_features <= 100:
batch_size = 128
val_batch_size = 512
elif dataset.n_features <= 1000:
batch_size = 32
val_batch_size = 64
else:
batch_size = 16
val_batch_size = 16
# data loaders
data_list = [X_num, ys] if X_cat is None else [X_num, X_cat, ys]
train_dataset = TensorDataset(*(d['train'] for d in data_list))
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
)
val_dataset = TensorDataset(*(d['val'] for d in data_list))
val_loader = DataLoader(
dataset=val_dataset,
batch_size=val_batch_size,
shuffle=False,
)
test_dataset = TensorDataset(*(d['test'] for d in data_list))
test_loader = DataLoader(
dataset=test_dataset,
batch_size=val_batch_size,
shuffle=False,
)
dataloaders = {'train': train_loader, 'val': val_loader, 'test': test_loader}
"""Loss Function"""
loss_fn = (
F.binary_cross_entropy_with_logits
if dataset.is_binclass
else F.cross_entropy
if dataset.is_multiclass
else F.mse_loss
)
"""utils function"""
def apply_model(model, x_num, x_cat, mixup=True, beta=None, mtype:str=None):
use_mixup = mixup and model.training
return model(x_num, x_cat, mixup=use_mixup, beta=beta, mtype=mtype)
@torch.inference_mode()
def evaluate(model, parts):
model.eval()
predictions = {}
for part in parts:
assert part in ['train', 'val', 'test']
predictions[part] = []
for batch in dataloaders[part]:
x_num, x_cat, y = (
(batch[0], None, batch[1])
if len(batch) == 2
else batch
)
predictions[part].append(apply_model(model, x_num, x_cat, mixup=False))
predictions[part] = torch.cat(predictions[part]).cpu().numpy()
prediction_type = None if dataset.is_regression else 'logits'
return dataset.calculate_metrics(predictions, prediction_type)
running_time = 0.
def train(model, train_cfg, mix_cfg):
# optimizer
def needs_wd(name):
return all(x not in name for x in ['tokenizer', '.norm', '.bias'])
parameters_with_wd = [v for k, v in model.named_parameters() if needs_wd(k)]
parameters_without_wd = [v for k, v in model.named_parameters() if not needs_wd(k)]
optimizer = make_optimizer(
train_cfg['optimizer'],
(
[
{'params': parameters_with_wd},
{'params': parameters_without_wd, 'weight_decay': 0.0},
]
),
train_cfg['lr'],
train_cfg['weight_decay'],
)
# mixup config
beta, mtype = mix_cfg['beta'], mix_cfg['mix_type']
"""Training"""
n_epochs = train_cfg['max_epoch'] # 500 in default
# warmup and lr scheduler
warm_up = 10 # warm up epoch
scheduler = CosineAnnealingLR(optimizer=optimizer, T_max=n_epochs - warm_up) # lr decay
max_lr = train_cfg['lr']
best_score = -np.inf
no_improvement = 0
EARLY_STOP = args.early_stop # 32 in default
global running_time
start = time.time()
for epoch in range(1, n_epochs + 1):
model.train()
# warm up lr
if warm_up > 0 and epoch <= warm_up:
lr = max_lr * epoch / warm_up
# print(f'warm up ({epoch}/{warm_up})')
for param_group in optimizer.param_groups:
param_group['lr'] = lr
else:
scheduler.step()
for iteration, batch in enumerate(train_loader):
x_num, x_cat, y = (
(batch[0], None, batch[1])
if len(batch) == 2
else batch
)
optimizer.zero_grad()
if mtype == 'none':
loss = loss_fn(apply_model(model, x_num, x_cat, mixup=False), y)
else:
preds, feat_masks, shuffled_ids = apply_model(model, x_num, x_cat, mixup=True, beta=beta, mtype=mtype)
if mtype == 'feat_mix':
lambdas = (sorted_mi_scores * feat_masks).sum(1) # bs
lambdas2 = 1 - lambdas
elif mtype == 'hidden_mix':
lambdas = feat_masks
lambdas2 = 1 - lambdas
if dataset.is_regression:
mix_y = lambdas * y + lambdas2 * y[shuffled_ids]
loss = loss_fn(preds, mix_y)
else:
loss = lambdas * loss_fn(preds, y, reduction='none') + lambdas2 * loss_fn(preds, y[shuffled_ids], reduction='none')
loss = loss.mean()
loss.backward()
optimizer.step()
scores = evaluate(model, ['val'])
if dataset.is_binclass: # for binary classification use AUC metric
val_score = scores['val']['roc_auc']
else:
val_score = scores['val']['score']
if val_score > best_score:
best_score = val_score
print(' <<< BEST VALIDATION EPOCH')
no_improvement = 0
else:
no_improvement += 1
if no_improvement == EARLY_STOP:
break
running_time += time.time() - start
return best_score
""" Prepare Model """
# datset specific params
n_num_features = dataset.n_num_features # drop some features
cardinalities = None
def objective(trial):
# fully tune hyper spaces (model config)
model_configs = {
**cfg['model'],
'd_numerical': n_num_features, 'd_out': d_out, 'categories': cardinalities,
'ffn_dropout': 0., 'attention_dropout': 0.3,
'init_scale': 0.01, # param for the Attenuated Initialization (keep fixed)
'residual_dropout': trial.suggest_float('residual_dropout', 0, 0.5),
'n_layers': trial.suggest_int('n_layers', 2, 5), # choose (2, 3) for large dataset if out of memory
'n_heads': 2 ** trial.suggest_int('n_heads_exp', 2, 5),
'd_token': 2 ** trial.suggest_int('d_token_exp', 6, 8),
}
# fully tune hyper spaces (training config)
training_configs = {
**cfg['training'],
'lr': trial.suggest_loguniform('lr', 3e-5, 1e-3),
'weight_decay': (
0.0 if not trial.suggest_categorical('use_wd', [True, False])
else trial.suggest_loguniform('wd_value', 1e-6, 1e-3)
)
}
# fully tune hyper spaces (mixup config)
mixup_configs = {
**cfg['mixup'],
'beta': trial.suggest_float('beta', 0.1, 3.0),
'mix_type': trial.suggest_categorical('mix_type', ['feat_mix', 'hidden_mix', 'none'])
}
model = ExcelFormer(**model_configs).to(device)
if torch.cuda.device_count() > 1:
print('Using nn.DataParallel')
model = nn.DataParallel(model)
best_val_score = train(model, training_configs, mixup_configs)
return best_val_score
cfg_file = f'{args.output}/cfg-tmp.json'
def save_per_iter(study: optuna.Study, trial: optuna.Trial):
# model config
saved_model_cfg = {**cfg['model'], 'ffn_dropout': 0., 'attention_dropout': 0.3, 'init_scale': 0.01}
for k in ['residual_dropout', 'n_layers', 'n_heads_exp', 'd_token_exp']:
if k.endswith('_exp'):
saved_model_cfg[k[:-4]] = 2 ** study.best_trial.params.get(k)
else:
saved_model_cfg[k] = study.best_trial.params.get(k)
# training config
saved_training_cfg = cfg['training'].copy()
saved_training_cfg.update({
'lr': study.best_trial.params.get('lr'),
'weight_decay': (
0.0 if not study.best_trial.params.get('use_wd')
else study.best_trial.params.get('wd_value')
)
})
# mixup config
saved_mixup_cfg = {k: study.best_trial.params.get(k) for k in ['beta', 'mix_type']}
# saved hyper-parameters
hyperparams = {
'time': running_time,
'eval_score': study.best_trial.value,
'metric': 'rmse' if dataset.is_regression else 'roc_auc' if dataset.is_binclass else 'accuracy',
'n_trial': study.best_trial.number,
'dataset': args.dataset,
'normalization': args.normalization,
'model': saved_model_cfg,
'training': saved_training_cfg,
'mixup': saved_mixup_cfg,
}
with open(cfg_file, 'w') as f:
json.dump(hyperparams, f, indent=4, ensure_ascii=False)
if (trial.number + 1) % 10 == 0:
# record config per 10 trials
shutil.copyfile(cfg_file, f'{args.output}/cfg{trial.number + 1}.json')
iterations = 50 # search 50 iterations for mix tune
study = optuna.create_study(direction="maximize")
# the start trial is based on the best config in mix tuning
study.enqueue_trial({
**{k: cfg['model'][k] for k in ['residual_dropout', 'n_layers']},
**{f'{k}_exp': int(math.log2(cfg['model'][k])) for k in ['n_heads', 'd_token']},
**{'lr': cfg['training']['lr'], 'use_wd': False},
**{k: cfg['mixup'][k] for k in ['beta', 'mix_type']}
})
study.optimize(func=objective, n_trials=iterations, callbacks=[save_per_iter])
"""finish tuning"""
final_cfg_file = f'{args.output}/cfg.json'
shutil.copyfile(cfg_file, final_cfg_file)