-
Notifications
You must be signed in to change notification settings - Fork 249
/
eval.py
80 lines (69 loc) · 3.08 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# -*- coding: utf-8 -*-
# @Time : 2018/6/11 15:54
# @Author : zhoujun
import os
import sys
import pathlib
__dir__ = pathlib.Path(os.path.abspath(__file__))
sys.path.append(str(__dir__))
sys.path.append(str(__dir__.parent.parent))
# project = 'DBNet.pytorch' # 工作项目根目录
# sys.path.append(os.getcwd().split(project)[0] + project)
import argparse
import time
import torch
from tqdm.auto import tqdm
class EVAL():
def __init__(self, model_path, gpu_id=0):
from models import build_model
from data_loader import get_dataloader
from post_processing import get_post_processing
from utils import get_metric
self.gpu_id = gpu_id
if self.gpu_id is not None and isinstance(self.gpu_id, int) and torch.cuda.is_available():
self.device = torch.device("cuda:%s" % self.gpu_id)
torch.backends.cudnn.benchmark = True
else:
self.device = torch.device("cpu")
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
config = checkpoint['config']
config['arch']['backbone']['pretrained'] = False
self.validate_loader = get_dataloader(config['dataset']['validate'], config['distributed'])
self.model = build_model(config['arch'])
self.model.load_state_dict(checkpoint['state_dict'])
self.model.to(self.device)
self.post_process = get_post_processing(config['post_processing'])
self.metric_cls = get_metric(config['metric'])
def eval(self):
self.model.eval()
# torch.cuda.empty_cache() # speed up evaluating after training finished
raw_metrics = []
total_frame = 0.0
total_time = 0.0
for i, batch in tqdm(enumerate(self.validate_loader), total=len(self.validate_loader), desc='test model'):
with torch.no_grad():
# 数据进行转换和丢到gpu
for key, value in batch.items():
if value is not None:
if isinstance(value, torch.Tensor):
batch[key] = value.to(self.device)
start = time.time()
preds = self.model(batch['img'])
boxes, scores = self.post_process(batch, preds,is_output_polygon=self.metric_cls.is_output_polygon)
total_frame += batch['img'].size()[0]
total_time += time.time() - start
raw_metric = self.metric_cls.validate_measure(batch, (boxes, scores))
raw_metrics.append(raw_metric)
metrics = self.metric_cls.gather_measure(raw_metrics)
print('FPS:{}'.format(total_frame / total_time))
return metrics['recall'].avg, metrics['precision'].avg, metrics['fmeasure'].avg
def init_args():
parser = argparse.ArgumentParser(description='DBNet.pytorch')
parser.add_argument('--model_path', required=False,default='output/DBNet_resnet18_FPN_DBHead/checkpoint/1.pth', type=str)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = init_args()
eval = EVAL(args.model_path)
result = eval.eval()
print(result)