forked from thuml/Transfer-Learning-Library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
advent.py
388 lines (334 loc) · 16.3 KB
/
advent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""
@author: Junguang Jiang
@contact: [email protected]
"""
import random
import time
import warnings
import sys
import argparse
from PIL import Image
import numpy as np
import shutil
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import SGD, Adam
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
sys.path.append('../../..')
from tllib.alignment.advent import Discriminator, DomainAdversarialEntropyLoss
import tllib.vision.models.segmentation as models
import tllib.vision.datasets.segmentation as datasets
import tllib.vision.transforms.segmentation as T
from tllib.vision.transforms import DeNormalizeAndTranspose
from tllib.utils.data import ForeverDataIterator
from tllib.utils.metric import ConfusionMatrix
from tllib.utils.meter import AverageMeter, ProgressMeter, Meter
from tllib.utils.logger import CompleteLogger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args: argparse.Namespace):
logger = CompleteLogger(args.log, args.phase)
print(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
cudnn.benchmark = True
# Data loading code
source_dataset = datasets.__dict__[args.source]
train_source_dataset = source_dataset(
root=args.source_root,
transforms=T.Compose([
T.RandomResizedCrop(size=args.train_size, ratio=args.resize_ratio, scale=(0.5, 1.)),
T.ColorJitter(brightness=0.3, contrast=0.3),
T.RandomHorizontalFlip(),
T.NormalizeAndTranspose(),
]),
)
train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, pin_memory=True, drop_last=True)
target_dataset = datasets.__dict__[args.target]
train_target_dataset = target_dataset(
root=args.target_root,
transforms=T.Compose([
T.RandomResizedCrop(size=args.train_size, ratio=(2., 2.), scale=(0.5, 1.)),
T.RandomHorizontalFlip(),
T.NormalizeAndTranspose(),
]),
)
train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, pin_memory=True, drop_last=True)
val_target_dataset = target_dataset(
root=args.target_root, split='val',
transforms=T.Compose([
T.Resize(image_size=args.test_input_size, label_size=args.test_output_size),
T.NormalizeAndTranspose(),
]),
)
val_target_loader = DataLoader(val_target_dataset, batch_size=1, shuffle=False, pin_memory=True)
train_source_iter = ForeverDataIterator(train_source_loader)
train_target_iter = ForeverDataIterator(train_target_loader)
# create model
num_classes = train_source_dataset.num_classes
model = models.__dict__[args.arch](num_classes=num_classes).to(device)
discriminator = Discriminator(num_classes=num_classes).to(device)
# define optimizer and lr scheduler
optimizer = SGD(model.get_parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer_d = Adam(discriminator.parameters(), lr=args.lr_d, betas=(0.9, 0.99))
lr_scheduler = LambdaLR(optimizer, lambda x: args.lr * (1. - float(x) / args.epochs / args.iters_per_epoch) ** (args.lr_power))
lr_scheduler_d = LambdaLR(optimizer_d, lambda x: (1. - float(x) / args.epochs / args.iters_per_epoch) ** (args.lr_power))
# optionally resume from a checkpoint
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
discriminator.load_state_dict(checkpoint['discriminator'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
optimizer_d.load_state_dict(checkpoint['optimizer_d'])
lr_scheduler_d.load_state_dict(checkpoint['lr_scheduler_d'])
args.start_epoch = checkpoint['epoch'] + 1
# define loss function (criterion)
criterion = torch.nn.CrossEntropyLoss(ignore_index=args.ignore_label).to(device)
dann = DomainAdversarialEntropyLoss(discriminator)
interp_train = nn.Upsample(size=args.train_size[::-1], mode='bilinear', align_corners=True)
interp_val = nn.Upsample(size=args.test_output_size[::-1], mode='bilinear', align_corners=True)
# define visualization function
decode = train_source_dataset.decode_target
def visualize(image, pred, label, prefix):
"""
Args:
image (tensor): 3 x H x W
pred (tensor): C x H x W
label (tensor): H x W
prefix: prefix of the saving image
"""
image = image.detach().cpu().numpy()
pred = pred.detach().max(dim=0)[1].cpu().numpy()
label = label.cpu().numpy()
for tensor, name in [
(Image.fromarray(np.uint8(DeNormalizeAndTranspose()(image))), "image"),
(decode(label), "label"),
(decode(pred), "pred")
]:
tensor.save(logger.get_image_path("{}_{}.png".format(prefix, name)))
if args.phase == 'test':
confmat = validate(val_target_loader, model, interp_val, criterion, visualize, args)
print(confmat)
return
# start training
best_iou = 0.
for epoch in range(args.start_epoch, args.epochs):
logger.set_epoch(epoch)
print(lr_scheduler.get_lr(), lr_scheduler_d.get_lr())
# train for one epoch
train(train_source_iter, train_target_iter, model, interp_train, criterion, dann, optimizer,
lr_scheduler, optimizer_d, lr_scheduler_d, epoch, visualize if args.debug else None, args)
# evaluate on validation set
confmat = validate(val_target_loader, model, interp_val, criterion, None, args)
print(confmat.format(train_source_dataset.classes))
acc_global, acc, iu = confmat.compute()
# calculate the mean iou over partial classes
indexes = [train_source_dataset.classes.index(name) for name
in train_source_dataset.evaluate_classes]
iu = iu[indexes]
mean_iou = iu.mean()
# remember best acc@1 and save checkpoint
torch.save(
{
'model': model.state_dict(),
'discriminator': discriminator.state_dict(),
'optimizer': optimizer.state_dict(),
'optimizer_d': optimizer_d.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'lr_scheduler_d': lr_scheduler_d.state_dict(),
'epoch': epoch,
'args': args
}, logger.get_checkpoint_path(epoch)
)
if mean_iou > best_iou:
shutil.copy(logger.get_checkpoint_path(epoch), logger.get_checkpoint_path('best'))
best_iou = max(best_iou, mean_iou)
print("Target: {} Best: {}".format(mean_iou, best_iou))
logger.close()
def train(train_source_iter: ForeverDataIterator, train_target_iter: ForeverDataIterator,
model, interp, criterion, dann,
optimizer: SGD, lr_scheduler: LambdaLR, optimizer_d: SGD, lr_scheduler_d: LambdaLR,
epoch: int, visualize, args: argparse.Namespace):
batch_time = AverageMeter('Time', ':4.2f')
data_time = AverageMeter('Data', ':3.1f')
losses_s = AverageMeter('Loss (s)', ':3.2f')
losses_transfer = AverageMeter('Loss (transfer)', ':3.2f')
losses_discriminator = AverageMeter('Loss (discriminator)', ':3.2f')
accuracies_s = Meter('Acc (s)', ':3.2f')
accuracies_t = Meter('Acc (t)', ':3.2f')
iou_s = Meter('IoU (s)', ':3.2f')
iou_t = Meter('IoU (t)', ':3.2f')
confmat_s = ConfusionMatrix(model.num_classes)
confmat_t = ConfusionMatrix(model.num_classes)
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses_s, losses_transfer, losses_discriminator,
accuracies_s, accuracies_t, iou_s, iou_t],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i in range(args.iters_per_epoch):
x_s, label_s = next(train_source_iter)
x_t, label_t = next(train_target_iter)
x_s = x_s.to(device)
label_s = label_s.long().to(device)
x_t = x_t.to(device)
label_t = label_t.long().to(device)
# measure data loading time
data_time.update(time.time() - end)
optimizer.zero_grad()
optimizer_d.zero_grad()
# Step 1: Train the segmentation network, freeze the discriminator
dann.eval()
y_s = model(x_s)
pred_s = interp(y_s)
loss_cls_s = criterion(pred_s, label_s)
loss_cls_s.backward()
# adversarial training to fool the discriminator
y_t = model(x_t)
pred_t = interp(y_t)
loss_transfer = dann(pred_t, 'source')
(loss_transfer * args.trade_off).backward()
# Step 2: Train the discriminator
dann.train()
loss_discriminator = 0.5 * (dann(pred_s.detach(), 'source') + dann(pred_t.detach(), 'target'))
loss_discriminator.backward()
# compute gradient and do SGD step
optimizer.step()
optimizer_d.step()
lr_scheduler.step()
lr_scheduler_d.step()
# measure accuracy and record loss
losses_s.update(loss_cls_s.item(), x_s.size(0))
losses_transfer.update(loss_transfer.item(), x_s.size(0))
losses_discriminator.update(loss_discriminator.item(), x_s.size(0))
confmat_s.update(label_s.flatten(), pred_s.argmax(1).flatten())
confmat_t.update(label_t.flatten(), pred_t.argmax(1).flatten())
acc_global_s, acc_s, iu_s = confmat_s.compute()
acc_global_t, acc_t, iu_t = confmat_t.compute()
accuracies_s.update(acc_s.mean().item())
accuracies_t.update(acc_t.mean().item())
iou_s.update(iu_s.mean().item())
iou_t.update(iu_t.mean().item())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if visualize is not None:
visualize(x_s[0], pred_s[0], label_s[0], "source_{}".format(i))
visualize(x_t[0], pred_t[0], label_t[0], "target_{}".format(i))
def validate(val_loader: DataLoader, model, interp, criterion, visualize, args: argparse.Namespace):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
acc = Meter('Acc', ':3.2f')
iou = Meter('IoU', ':3.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, acc, iou],
prefix='Test: ')
# switch to evaluate mode
model.eval()
confmat = ConfusionMatrix(model.num_classes)
with torch.no_grad():
end = time.time()
for i, (x, label) in enumerate(val_loader):
x = x.to(device)
label = label.long().to(device)
# compute output
output = interp(model(x))
loss = criterion(output, label)
# measure accuracy and record loss
losses.update(loss.item(), x.size(0))
confmat.update(label.flatten(), output.argmax(1).flatten())
acc_global, accs, iu = confmat.compute()
acc.update(accs.mean().item())
iou.update(iu.mean().item())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if visualize is not None:
visualize(x[0], output[0], label[0], "val_{}".format(i))
return confmat
if __name__ == '__main__':
architecture_names = sorted(
name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name])
)
dataset_names = sorted(
name for name in datasets.__dict__
if not name.startswith("__") and callable(datasets.__dict__[name])
)
parser = argparse.ArgumentParser(description='ADVENT for Segmentation Domain Adaptation')
# dataset parameters
parser.add_argument('source_root', help='root path of the source dataset')
parser.add_argument('target_root', help='root path of the target dataset')
parser.add_argument('-s', '--source', help='source domain(s)')
parser.add_argument('-t', '--target', help='target domain(s)')
parser.add_argument('--resize-ratio', nargs='+', type=float, default=(1.5, 8 / 3.),
help='the resize ratio for the random resize crop')
parser.add_argument('--train-size', nargs='+', type=int, default=(1024, 512),
help='the input and output image size during training')
parser.add_argument('--test-input-size', nargs='+', type=int, default=(1024, 512),
help='the input image size during test')
parser.add_argument('--test-output-size', nargs='+', type=int, default=(2048, 1024),
help='the output image size during test')
# model parameters
parser.add_argument('-a', '--arch', metavar='ARCH', default='deeplabv2_resnet101',
choices=architecture_names,
help='backbone architecture: ' +
' | '.join(architecture_names) +
' (default: deeplabv2_resnet101)')
parser.add_argument("--resume", type=str, default=None,
help="Where restore model parameters from.")
parser.add_argument('--trade-off', type=float, default=0.001,
help='trade-off parameter for the advent loss')
# training parameters
parser.add_argument('-b', '--batch-size', default=2, type=int,
metavar='N',
help='mini-batch size (default: 2)')
parser.add_argument('--lr', '--learning-rate', default=2.5e-3, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument("--momentum", type=float, default=0.9, help="Momentum component of the optimiser.")
parser.add_argument("--weight-decay", type=float, default=0.0005, help="Regularisation parameter for L2-loss.")
parser.add_argument("--lr-power", type=float, default=0.9,
help="Decay parameter to compute the learning rate (only for deeplab).")
parser.add_argument("--lr-d", default=1e-4, type=float,
metavar='LR', help='initial learning rate for discriminator')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=60, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('-i', '--iters-per-epoch', default=2500, type=int,
help='Number of iterations per epoch')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument("--ignore-label", type=int, default=255,
help="The index of the label to ignore during the training.")
parser.add_argument("--log", type=str, default='advent',
help="Where to save logs, checkpoints and debugging images.")
parser.add_argument("--phase", type=str, default='train', choices=['train', 'test'],
help="When phase is 'test', only test the model.")
parser.add_argument('--debug', action="store_true",
help='In the debug mode, save images and predictions during training')
args = parser.parse_args()
main(args)