forked from zll17/Neural_Topic_Models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
WTM.py
194 lines (170 loc) · 8.02 KB
/
WTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File : WTM.py
@Time : 2020/10/06 17:13:43
@Author : Leilan Zhang
@Version : 1.0
@Contact : [email protected]
@Desc : None
'''
import os
import re
import time
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from .wae import WAE
import sys
sys.path.append('..')
from utils import evaluate_topic_quality, smooth_curve
class WTM:
def __init__(self, bow_dim=10000, n_topic=20, device=None, dist='gmm_std', taskname=None, dropout=0.0):
self.bow_dim = bow_dim
self.n_topic = n_topic
self.wae = WAE(encode_dims=[bow_dim, 1024, 512, n_topic], decode_dims=[n_topic, 512, bow_dim], dropout=dropout, nonlin='relu')
self.device = device
self.id2token = None
self.dist = dist
self.taskname = taskname
if device != None:
self.wae = self.wae.to(device)
def train(self, train_data, batch_size=256, learning_rate=1e-3, test_data=None, num_epochs=100, is_evaluate=False, log_every=5, beta=1.0):
self.wae.train()
self.id2token = {v: k for k,v in train_data.dictionary.token2id.items()}
data_loader = DataLoader(train_data, batch_size=batch_size,shuffle=True, num_workers=4, collate_fn=train_data.collate_fn)
optimizer = torch.optim.Adam(self.wae.parameters(), lr=learning_rate)
#scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.5)
trainloss_lst, valloss_lst = [], []
c_v_lst, c_w2v_lst, c_uci_lst, c_npmi_lst, mimno_tc_lst, td_lst = [], [], [], [], [], []
for epoch in range(num_epochs):
epochloss_lst = []
for iter, data in enumerate(data_loader):
optimizer.zero_grad()
txts, bows = data
bows = bows.to(self.device)
bows_recon, theta_q = self.wae(bows)
theta_prior = self.wae.sample(dist=self.dist, batch_size=len(bows), ori_data=bows).to(self.device)
logsoftmax = torch.log_softmax(bows_recon, dim=1)
rec_loss = -1.0 * torch.sum(bows*logsoftmax)
#rec_loss = F.binary_cross_entropy(torch.softmax(bows_recon,dim=1),bows,reduction='sum')
#rec_loss = F.binary_cross_entropy(bows_recon,bows,reduction='sum')
mmd = self.wae.mmd_loss(theta_q, theta_prior, device=self.device, t=0.1)
#mmd = self.wae.mmd_loss(hid_vecs, theta_prior, device=self.device, t=0.1)
s = torch.sum(bows)/len(bows)
lamb = (5.0*s*torch.log(torch.tensor(1.0 *bows.shape[-1]))/torch.log(torch.tensor(2.0)))
mmd = mmd * lamb
loss = rec_loss + mmd * beta
loss.backward()
optimizer.step()
trainloss_lst.append(loss.item()/len(bows))
epochloss_lst.append(loss.item()/len(bows))
if (iter+1) % 10 == 0:
print(f'Epoch {(epoch+1):>3d}\tIter {(iter+1):>4d}\tLoss:{loss.item()/len(bows):<.7f}\tRec Loss:{rec_loss.item()/len(bows):<.7f}\tMMD:{mmd.item()/len(bows):<.7f}')
#scheduler.step()
if (epoch+1) % log_every == 0:
print(f'Epoch {(epoch+1):>3d}\tLoss:{sum(epochloss_lst)/len(epochloss_lst):<.7f}')
print('\n'.join([str(lst) for lst in self.show_topic_words()]))
print('='*30)
smth_pts = smooth_curve(trainloss_lst)
plt.plot(np.array(range(len(smth_pts)))*log_every, smth_pts)
plt.xlabel('epochs')
plt.title('Train Loss')
plt.savefig('wlda_trainloss.png')
if test_data!=None:
c_v,c_w2v,c_uci,c_npmi,mimno_tc, td = self.evaluate(test_data,calc4each=False)
c_v_lst.append(c_v), c_w2v_lst.append(c_w2v), c_uci_lst.append(c_uci),c_npmi_lst.append(c_npmi), mimno_tc_lst.append(mimno_tc), td_lst.append(td)
save_name = f'./ckpt/WTM_{self.taskname}_tp{self.n_topic}_{self.dist}_{time.strftime("%Y-%m-%d-%H-%M", time.localtime())}.ckpt'
torch.save(self.wae.state_dict(),save_name)
scrs = {'c_v':c_v_lst,'c_w2v':c_w2v_lst,'c_uci':c_uci_lst,'c_npmi':c_npmi_lst,'mimno_tc':mimno_tc_lst,'td':td_lst}
'''
for scr_name,scr_lst in scrs.items():
plt.cla()
plt.plot(np.array(range(len(scr_lst)))*log_every,scr_lst)
plt.savefig(f'wlda_{scr_name}.png')
'''
plt.cla()
for scr_name,scr_lst in scrs.items():
if scr_name in ['c_v','c_w2v','td']:
plt.plot(np.array(range(len(scr_lst)))*log_every,scr_lst,label=scr_name)
plt.title('Topic Coherence')
plt.xlabel('epochs')
plt.legend()
plt.savefig(f'wlda_tc_scores.png')
def evaluate(self, test_data, calc4each=False):
topic_words = self.show_topic_words()
return evaluate_topic_quality(topic_words, test_data, taskname=self.taskname, calc4each=calc4each)
def inference(self, doc_bow):
# doc_bow: torch.tensor [vocab_size]; optional: np.array [vocab_size]
if isinstance(doc_bow,np.array):
doc_bow = torch.from_numpy(doc_bow)
doc_bow = doc_bow.reshape(1,self.bow_dim).to(self.device)
with torch.no_grad():
theta = F.softmax(self.wae.encode(doc_bow),dim=1)
return theta.detach().cpu().squeeze(0).numpy()
def inference(self, doc_tokenized, dictionary,normalize=True):
doc_bow = torch.zeros(1,self.bow_dim)
for token in doc_tokenized:
try:
idx = dictionary.token2id[token]
doc_bow[0][idx] = 1.0
except:
print(f'{token} not in the vocabulary.')
doc_bow = doc_bow.to(self.device)
with torch.no_grad():
theta = self.wae.encode(doc_bow)
if normalize:
theta = F.softmax(theta,dim=1)
return theta.detach().cpu().squeeze(0).numpy()
def get_embed(self,train_data, num=1000):
self.wae.eval()
data_loader = DataLoader(train_data, batch_size=512,shuffle=False, num_workers=4, collate_fn=train_data.collate_fn)
embed_lst = []
txt_lst = []
for data_batch in data_loader:
txts, bows = data_batch
embed = self.inference(bows,train_data.dictionary)
embed_lst.append(embed)
txt_lst.append(txts)
cnt += embed.shape[0]
if cnt>=num:
break
embed_lst = torch.concat(embed_lst,dim=0)[:num]
txt_lst = torch.concat(txt_lst,dim=0)[:num]
return txt_lst, embed_lst
def get_topic_word_dist(self,normalize=True):
self.wae.eval()
with torch.no_grad():
idxes = torch.eye(self.n_topic).to(self.device)
word_dist = self.wae.decode(idxes) # word_dist: [n_topic, vocab.size]
if normalize:
word_dist = F.softmax(word_dist,dim=1)
return word_dist.detach().cpu().numpy()
def show_topic_words(self, topic_id=None, topK=15):
self.wae.eval()
topic_words = []
idxes = torch.eye(self.n_topic).to(self.device)
word_dist = self.wae.decode(idxes)
word_dist = F.softmax(word_dist, dim=1)
vals, indices = torch.topk(word_dist, topK, dim=1)
vals = vals.cpu().tolist()
indices = indices.cpu().tolist()
if topic_id == None:
for i in range(self.n_topic):
topic_words.append([self.id2token[idx] for idx in indices[i]])
else:
topic_words.append([self.id2token[idx] for idx in indices[topic_id]])
return topic_words
if __name__ == '__main__':
model = WAE(encode_dims=[1024, 512, 256, 20],
decode_dims=[20, 128, 768, 1024])
model = model.cuda()
inpt = torch.randn(234, 1024).cuda()
out, mu, log_var = model(inpt)
print(out.shape)
print(mu.shape)