-
Notifications
You must be signed in to change notification settings - Fork 8
/
main.py
245 lines (231 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from __future__ import print_function
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from model.resnet import resnet34, resnet50
from model.basenet import AlexNetBase, VGGBase, Predictor, Predictor_deep
from utils.utils import weights_init
from utils.lr_schedule import inv_lr_scheduler
from utils.return_dataset import return_dataset
from utils.loss import entropy, adentropy
# Training settings
parser = argparse.ArgumentParser(description='Visda Classification')
parser.add_argument('--steps', type=int, default=50000, metavar='N',
help='number of iterations to train (default: 50000)')
parser.add_argument('--method', type=str, default='MME', choices=['S+T', 'ENT', 'MME'],
help='MME is proposed method, ENT is entropy minimization, S+T is training only on labeled examples')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.001)')
parser.add_argument('--multi', type=float, default=0.1, metavar='MLT',
help='learning rate multiplication')
parser.add_argument('--T', type=float, default=0.05, metavar='T',
help='temperature (default: 0.05)')
parser.add_argument('--lamda', type=float, default=0.1, metavar='LAM',
help='value of lamda')
parser.add_argument('--save_check', action='store_true', default=False,
help='save checkpoint or not')
parser.add_argument('--checkpath', type=str, default='./save_model_ssda',
help='dir to save checkpoint')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save_interval', type=int, default=500, metavar='N',
help='how many batches to wait before testing and saving a model')
parser.add_argument('--net', type=str, default='resnet34', metavar='B',
help='which network to use')
parser.add_argument('--source', type=str, default='real', metavar='B',
help='source domain')
parser.add_argument('--target', type=str, default='sketch', metavar='B',
help='target domain')
parser.add_argument('--dataset', type=str, default='multi_all', choices=['multi_all'],
help='the name of dataset')
args = parser.parse_args()
print('dataset %s source %s target %s network %s' % (args.dataset, args.source, args.target, args.net))
source_loader, target_loader, target_loader_unl, class_list = return_dataset(args)
use_gpu = torch.cuda.is_available()
record_dir = 'record/%s/%s' % (args.dataset, args.method)
if not os.path.exists(record_dir):
os.makedirs(record_dir)
record_file = os.path.join(record_dir,
'%s_net_%s_%s_to_%s_lamda_%s' % (
args.method, args.net, args.source, args.target, args.lamda))
record_dir_train = 'record_train/%s/%s' % (args.dataset, args.method)
if not os.path.exists(record_dir_train):
os.makedirs(record_dir_train)
torch.cuda.manual_seed(args.seed)
if args.net == 'resnet34':
G = resnet34()
inc = 512
elif args.net == 'resnet50':
G = resnet50()
inc = 2048
elif args.net == "alexnet":
G = AlexNetBase()
inc = 4096
elif args.net == "vgg":
G = VGGBase()
inc = 4096
else:
raise ValueError('Model cannot be recognized.')
params = []
for key, value in dict(G.named_parameters()).items():
if value.requires_grad:
if 'bias' in key:
params += [{'params': [value], 'lr': args.multi, 'weight_decay': 0.0005}]
else:
params += [{'params': [value], 'lr': args.multi, 'weight_decay': 0.0005}]
if "resnet" in args.net:
F1 = Predictor_deep(num_class=len(class_list),
inc=inc)
else:
F1 = Predictor(num_class=len(class_list), inc=inc, cosine=True, temp=args.T)
weights_init(F1)
lr = args.lr
G.cuda()
F1.cuda()
im_data_s = torch.FloatTensor(1)
im_data_t = torch.FloatTensor(1)
im_data_tu = torch.FloatTensor(1)
gt_labels_s = torch.LongTensor(1)
gt_labels_t = torch.LongTensor(1)
sample_labels_t = torch.LongTensor(1)
sample_labels_s = torch.LongTensor(1)
im_data_s = im_data_s.cuda()
im_data_t = im_data_t.cuda()
im_data_tu = im_data_tu.cuda()
gt_labels_s = gt_labels_s.cuda()
gt_labels_t = gt_labels_t.cuda()
sample_labels_t = sample_labels_t.cuda()
sample_labels_s = sample_labels_s.cuda()
im_data_s = Variable(im_data_s)
im_data_t = Variable(im_data_t)
im_data_tu = Variable(im_data_tu)
gt_labels_s = Variable(gt_labels_s)
gt_labels_t = Variable(gt_labels_t)
sample_labels_t = Variable(sample_labels_t)
sample_labels_s = Variable(sample_labels_s)
if os.path.exists(args.checkpath) == False:
os.mkdir(args.checkpath)
def train():
G.train()
F1.train()
optimizer_g = optim.SGD(params, momentum=0.9, weight_decay=0.0005,
nesterov=True)
optimizer_f = optim.SGD(list(F1.parameters()), lr=1.0, momentum=0.9, weight_decay=0.0005,
nesterov=True)
def zero_grad_all():
optimizer_g.zero_grad()
optimizer_f.zero_grad()
param_lr_g = []
for param_group in optimizer_g.param_groups:
param_lr_g.append(param_group["lr"])
param_lr_f = []
for param_group in optimizer_f.param_groups:
param_lr_f.append(param_group["lr"])
criterion = nn.CrossEntropyLoss().cuda()
all_step = args.steps
data_iter_s = iter(source_loader)
data_iter_t = iter(target_loader)
data_iter_t_unl = iter(target_loader_unl)
len_train_source = len(source_loader)
len_train_target = len(target_loader)
len_train_target_semi = len(target_loader_unl)
for step in range(all_step):
optimizer_g = inv_lr_scheduler(param_lr_g, optimizer_g, step, init_lr=args.lr)
optimizer_f = inv_lr_scheduler(param_lr_f, optimizer_f, step, init_lr=args.lr)
lr = optimizer_f.param_groups[0]['lr']
if step % len_train_target == 0:
data_iter_t = iter(target_loader)
if step % len_train_target_semi == 0:
data_iter_t_unl = iter(target_loader_unl)
if step % len_train_source == 0:
data_iter_s = iter(source_loader)
data_t = next(data_iter_t)
data_t_unl = next(data_iter_t_unl)
data_s = next(data_iter_s)
im_data_s.data.resize_(data_s[0].size()).copy_(data_s[0])
gt_labels_s.data.resize_(data_s[1].size()).copy_(data_s[1])
im_data_t.data.resize_(data_t[0].size()).copy_(data_t[0])
gt_labels_t.data.resize_(data_t[1].size()).copy_(data_t[1])
im_data_tu.data.resize_(data_t_unl[0].size()).copy_(data_t_unl[0])
zero_grad_all()
data = torch.cat((im_data_s, im_data_t), 0)
target = torch.cat((gt_labels_s, gt_labels_t), 0)
output = G(data)
out1 = F1(output)
loss = criterion(out1, target)
loss.backward(retain_graph=True)
optimizer_g.step()
optimizer_f.step()
zero_grad_all()
if not args.method == 'S+T':
output = G(im_data_tu)
if args.method == 'ENT':
loss_t = entropy(F1, output, args.lamda)
loss_t.backward()
optimizer_f.step()
optimizer_g.step()
elif args.method == 'MME':
loss_t = adentropy(F1, output, args.lamda)
loss_t.backward()
optimizer_f.step()
optimizer_g.step()
else:
raise ValueError('Method cannot be recognized.')
log_train = 'S {} T {} Train Ep: {} lr{} \t Loss Classification: {:.6f} Loss T {:.6f} Method {}\n'.format(
args.source, args.target,
step, lr, loss.data, -loss_t.data, args.method)
else:
log_train = 'S {} T {} Train Ep: {} lr{} \t Loss Classification: {:.6f} Method {}\n'.format(
args.source, args.target,
step, lr, loss.data, args.method)
G.zero_grad()
F1.zero_grad()
zero_grad_all()
if step % args.log_interval == 0:
print(log_train)
if step % args.save_interval == 0 and step > 0:
test(target_loader_unl)
G.train()
F1.train()
if args.save_check:
print('saving model')
torch.save(G.state_dict(), os.path.join(args.checkpath,
"G_iter_model_{}_{}_to_{}_step_{}.pth.tar".format(
args.method, args.source, args.target, step)))
torch.save(F1.state_dict(),
os.path.join(args.checkpath, "F1_iter_model_{}_{}_to_{}_step_{}.pth.tar".format(
args.method, args.source, args.target, step)))
def test(loader):
G.eval()
F1.eval()
test_loss = 0
correct = 0
size = 0
num_class = len(class_list)
output_all = np.zeros((0, num_class))
criterion = nn.CrossEntropyLoss().cuda()
confusion_matrix = torch.zeros(num_class, num_class)
with torch.no_grad():
for batch_idx, data_t in enumerate(loader):
im_data_t.data.resize_(data_t[0].size()).copy_(data_t[0])
gt_labels_t.data.resize_(data_t[1].size()).copy_(data_t[1])
feat = G(im_data_t)
output1 = F1(feat)
output_all = np.r_[output_all, output1.data.cpu().numpy()]
size += im_data_t.size(0)
pred1 = output1.data.max(1)[1] # get the index of the max log-probability
for t, p in zip(gt_labels_t.view(-1), pred1.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
correct += pred1.eq(gt_labels_t.data).cpu().sum()
test_loss += criterion(output1, gt_labels_t) / len(loader)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} F1 ({:.0f}%)\n'.format(
test_loss, correct, size,
100. * correct / size))
return test_loss.data, 100. * float(correct) / size
train()