diff --git a/README.md b/README.md index a6024a3..2bf85b7 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,63 @@ -# SSL-DA -Semi-supervised domain adaptation rep +# [Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019)](https://arxiv.org/pdf/1904.06487.pdf) + +## Install + +`pip install -r requirements.txt` + +The code is written for Pytorch 0.4.0, but should work for other version +with some modifications. +## Data preparation (DomainNet) + +To get data, run + +`sh download_data.sh` + +The images will be stored in the following way. + +`./data/multi/real/category_name`, + +`./data/multi/sketch/category_name` + +The dataset split files are stored as follows, + +'./data/txt/multi/labeled_source_images_real.txt', + +'./data/txt/multi/unlabeled_target_images_sketch_3.txt', + +'./data/txt/multi/validation_target_images_sketch_3.txt'. + +At the moment (8/18/2019), we do not publish all data of DomainNet because we hold a [competition](http://ai.bu.edu/visda-2019/) and some domains are used there. + +With regard to office and office home dataset, store the image files in the following ways, + + `./data/office/amazon/category_name`, + `./data/office_home/Real/category_name`, + +We provide the split of office and office-home. + + +## Training + +To run training using alexnet, + +`sh run_train.sh gpu_id method alexnet` + +where, gpu_id = 0,1,2,3...., method=[MME,ENT,S+T]. + + +### Reference +If you consider using this code or its derivatives, please consider citing: + +``` +@article{saito2019semi, + title={Semi-supervised Domain Adaptation via Minimax Entropy}, + author={Saito, Kuniaki and Kim, Donghyun and Sclaroff, Stan and Darrell, Trevor and Saenko, Kate}, + journal={ICCV}, + year={2019} +} +``` + + + + +