-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
214 lines (182 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from __future__ import division
from __future__ import print_function
import argparse
import sys
import os
import json
import numpy as np
import tensorflow as tf
from tqdm import tqdm
from multi30k import Multi30KLoader
from coco import COCOLoader
from retrieval_model import MULE
from test import test_epoch
def process_epoch(epoch, data_loader, restore_path, vecs, pretrain_univeral_embedding):
im_feat_dim = data_loader.im_feat_shape[1]
steps_per_epoch = len(data_loader.sent_inds) // args.batch_size
# Setup placeholders for input variables.
im_feat_plh = tf.placeholder(tf.float32, shape=[args.batch_size, im_feat_dim])
sent_feat_plh = {}
# this list controls the languages a model actually learns
for language in args.languages:
token_length = data_loader.max_length[language]
sent_feat_plh[language] = tf.placeholder(tf.int32, shape=[args.batch_size * args.sample_size, token_length])
label_plh = tf.placeholder(tf.bool, shape=[args.batch_size * args.sample_size, args.batch_size])
train_phase_plh = tf.placeholder(tf.bool)
# Setup training operation.
model = MULE(args, vecs)
loss = model.setup_train_model(im_feat_plh, sent_feat_plh, train_phase_plh, label_plh)
# Setup optimizer.
global_step = tf.Variable(epoch * steps_per_epoch, trainable=False)
learning_rate = tf.train.exponential_decay(args.lr, global_step,
steps_per_epoch, 0.794, staircase=True)
optim = tf.train.AdamOptimizer(args.lr)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_step = optim.minimize(loss, global_step=global_step)
# Setup model saver.
saver = tf.train.Saver(save_relative_paths=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
if pretrain_univeral_embedding:
print('restoring pretrain checkpoint', restore_path)
mule_embedding_names = []
for language in args.languages:
mule_embedding_names.append('mule_%s/weights:0' % language)
mule_embedding_names.append('mule_%s/biases:0' % language)
variables = tf.contrib.slim.get_variables_to_restore()
variables_to_restore = [v for v in variables if v.name in mule_embedding_names]
pretrain_restore = tf.train.Saver(variables_to_restore, save_relative_paths=True)
pretrain_restore.restore(sess, restore_path.replace('.meta', ''))
print('done')
elif restore_path:
print('restoring checkpoint', restore_path)
saver.restore(sess, restore_path.replace('.meta', ''))
print('done')
data_loader.shuffle_inds()
for i in range(steps_per_epoch):
im_feats, sent_feats, labels = data_loader.get_batch(i, args.batch_size, args.sample_size)
p = float(epoch * steps_per_epoch + i) / (steps_per_epoch * args.max_num_epoch)
dm_lr = (2. / (1. + np.exp(-10. * p)) - 1) * args.domain_adapt
feed_dict = {
im_feat_plh : im_feats,
label_plh : labels,
model.dm_lr : dm_lr,
train_phase_plh : True,
}
for language, lang_plh in sent_feat_plh.iteritems():
feed_dict[lang_plh] = sent_feats[language]
[_, loss_val] = sess.run([train_step, loss], feed_dict = feed_dict)
if i % 100 == 0:
print('Epoch: [%d/%d] Step: [%d/%d] Loss: %f' % (epoch + 1, args.max_num_epoch, i + 1, steps_per_epoch, loss_val))
print('Saving checkpoint')
restore_path = os.path.join(args.save_dir, 'two_branch-ckpt')
saver.save(sess, restore_path, global_step = epoch + 1)
embeddings = {}
for language in args.languages:
embeddings['word_embeddings_%s:0' % language] = language
variables = tf.GraphKeys.GLOBAL_VARIABLES
for v in tf.get_collection(variables):
if v.name in embeddings:
vecs[embeddings[v.name]] = v.eval()
print(restore_path)
tf.reset_default_graph()
return vecs, restore_path + '-%i' % (epoch + 1)
def train_language_universal_embedding(data_loader, vecs):
steps_per_epoch = len(data_loader.sent_inds) // args.batch_size
sent_feat_plh = {}
# this list controls the languages a model actually learns
for language in args.languages:
token_length = data_loader.max_length[language]
sent_feat_plh[language] = tf.placeholder(tf.int32, shape=[args.batch_size * args.sample_size, token_length])
label_plh = tf.placeholder(tf.bool, shape=[args.batch_size * args.sample_size, args.batch_size])
model = MULE(args, vecs)
loss = model.universal_embedding_train(sent_feat_plh, label_plh)
# Setup optimizer.
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(args.lr, global_step,
steps_per_epoch, 0.794, staircase=True)
optim = tf.train.AdamOptimizer(args.lr)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_step = optim.minimize(loss, global_step=global_step)
# Setup model saver.
saver = tf.train.Saver(save_relative_paths=True)
num_epochs = 5
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in tqdm(range(num_epochs),desc='pretraining embedding', total=num_epochs):
data_loader.shuffle_inds()
for i in range(steps_per_epoch):
im_feats, sent_feats, labels = data_loader.get_batch(i, args.batch_size, args.sample_size)
feed_dict = {label_plh : labels}
for language, lang_plh in sent_feat_plh.iteritems():
feed_dict[lang_plh] = sent_feats[language]
[_, loss_val] = sess.run([train_step, loss], feed_dict = feed_dict)
print('Saving checkpoint')
restore_path = os.path.join(args.save_dir, 'two_branch-ckpt')
saver.save(sess, restore_path, global_step = 0)
tf.reset_default_graph()
return restore_path + '-0'
def main(_):
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# Load data.
if args.dataset == 'multi30k':
train_data_loader = Multi30KLoader(args, 'train')
val_data_loader = Multi30KLoader(args, 'val')
else:
train_data_loader = COCOLoader(args, 'train')
val_data_loader = COCOLoader(args, 'val')
vecs = train_data_loader.vecs
restore_path = args.restore_path
best_perf = 0.
best_epoch = 0
for epoch in range(args.max_num_epoch):
pretrain_univeral_embedding = args.univ_pretrain and epoch == 0 and not restore_path
if epoch % 5 == 0 or epoch == args.max_num_epoch:
if pretrain_univeral_embedding:
restore_path = train_language_universal_embedding(train_data_loader, vecs)
vecs, restore_path = process_epoch(epoch, train_data_loader, restore_path, vecs, pretrain_univeral_embedding)
perf = test_epoch(args, restore_path + '.meta', val_data_loader)
if perf > best_perf:
best_perf = perf
best_epoch = epoch + 1
args.val_best_perf = best_perf
args.val_best_epoch = best_epoch
json_outfile = os.path.join(args.save_dir, 'results.json')
print('best epoch at %i with val score %.1f' % (best_epoch, best_perf))
with open(json_outfile, 'w') as outfile:
json.dump(vars(args), outfile)
if __name__ == '__main__':
np.random.seed(0)
tf.set_random_seed(0)
parser = argparse.ArgumentParser()
# Dataset and checkpoints.
parser.add_argument('--save_dir', type=str, help='Directory for saving checkpoints.')
parser.add_argument('--restore_path', type=str, help='Path to the restoring checkpoint MetaGraph file.')
parser.add_argument('--split', type=str, default='train', help='Dataset split to train with.')
parser.add_argument('--dataset', type=str, help='Dataset to train.')
parser.add_argument('--languages', type=str, help='List of languages to train.')
# Training parameters.
parser.add_argument('--lr', type=float, default=0.0001, help='Learning rate.')
parser.add_argument('--batch_size', type=int, default=450, help='Batch size for training.')
parser.add_argument('--sample_size', type=int, default=2, help='Number of positive pair to sample.')
parser.add_argument('--max_sentence_length', type=int, default=40, help='Maximum number of words allowed per sentence.')
parser.add_argument('--max_num_epoch', type=int, default=20, help='Max number of epochs to train.')
parser.add_argument('--num_neg_sample', type=int, default=10, help='Number of negative example to sample.')
parser.add_argument('--margin', type=float, default=0.05, help='Margin.')
parser.add_argument('--embed_reg', type=float, default=5e-7, help='Word embedding regularization weight.')
parser.add_argument('--uni_align', type=float, default=1., help='MULE embedding neighborhood constraint weight.')
parser.add_argument('--embed_align', type=float, default=1., help='Cross-lang neighborhood constraint weight.')
parser.add_argument('--domain_adapt', type=float, default=1e-6, help='Language classifier loss weight.')
parser.add_argument('--im_loss_factor', type=float, default=1.5,
help='Factor multiplied with image loss. Set to 0 for single direction.')
parser.add_argument('--sent_only_loss_factor', type=float, default=0.05,
help='Factor multiplied with mono-lang sent only loss. Set to 0 for no neighbor constraint.')
parser.add_argument('--univ_pretrain', action='store_true', default=False, help='Pretrain the university embedding')
parser.add_argument('--separate_lang_branch', action='store_true', default=False, help='When true, a different language branch is used for each language')
global args
args, unparsed = parser.parse_known_args()
args.languages = args.languages.split(',')
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)