-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
index.xml
1213 lines (1074 loc) · 76.3 KB
/
index.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<title>Vision and Learning Lab @ UAlberta</title>
<link>https://vision-and-learning-lab-ualberta.github.io/</link>
<atom:link href="https://vision-and-learning-lab-ualberta.github.io/index.xml" rel="self" type="application/rss+xml" />
<description>Vision and Learning Lab @ UAlberta</description>
<generator>Source Themes Academic (https://sourcethemes.com/academic/)</generator><language>en-us</language><copyright>© Vision and Learning Lab, Univerity of Alberta 2022</copyright><lastBuildDate>Tue, 04 Jan 2022 00:00:00 +0000</lastBuildDate>
<image>
<url>https://vision-and-learning-lab-ualberta.github.io/images/icon_hu0b7a4cb9992c9ac0e91bd28ffd38dd00_9727_512x512_fill_lanczos_center_3.png</url>
<title>Vision and Learning Lab @ UAlberta</title>
<link>https://vision-and-learning-lab-ualberta.github.io/</link>
</image>
<item>
<title>Example Page 1</title>
<link>https://vision-and-learning-lab-ualberta.github.io/courses/example/example1/</link>
<pubDate>Sun, 05 May 2019 00:00:00 +0100</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/courses/example/example1/</guid>
<description><p>In this tutorial, I&rsquo;ll share my top 10 tips for getting started with Academic:</p>
<h2 id="tip-1">Tip 1</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum. Sed ac faucibus dolor, scelerisque sollicitudin nisi. Cras purus urna, suscipit quis sapien eu, pulvinar tempor diam. Quisque risus orci, mollis id ante sit amet, gravida egestas nisl. Sed ac tempus magna. Proin in dui enim. Donec condimentum, sem id dapibus fringilla, tellus enim condimentum arcu, nec volutpat est felis vel metus. Vestibulum sit amet erat at nulla eleifend gravida.</p>
<p>Nullam vel molestie justo. Curabitur vitae efficitur leo. In hac habitasse platea dictumst. Sed pulvinar mauris dui, eget varius purus congue ac. Nulla euismod, lorem vel elementum dapibus, nunc justo porta mi, sed tempus est est vel tellus. Nam et enim eleifend, laoreet sem sit amet, elementum sem. Morbi ut leo congue, maximus velit ut, finibus arcu. In et libero cursus, rutrum risus non, molestie leo. Nullam congue quam et volutpat malesuada. Sed risus tortor, pulvinar et dictum nec, sodales non mi. Phasellus lacinia commodo laoreet. Nam mollis, erat in feugiat consectetur, purus eros egestas tellus, in auctor urna odio at nibh. Mauris imperdiet nisi ac magna convallis, at rhoncus ligula cursus.</p>
<p>Cras aliquam rhoncus ipsum, in hendrerit nunc mattis vitae. Duis vitae efficitur metus, ac tempus leo. Cras nec fringilla lacus. Quisque sit amet risus at ipsum pharetra commodo. Sed aliquam mauris at consequat eleifend. Praesent porta, augue sed viverra bibendum, neque ante euismod ante, in vehicula justo lorem ac eros. Suspendisse augue libero, venenatis eget tincidunt ut, malesuada at lorem. Donec vitae bibendum arcu. Aenean maximus nulla non pretium iaculis. Quisque imperdiet, nulla in pulvinar aliquet, velit quam ultrices quam, sit amet fringilla leo sem vel nunc. Mauris in lacinia lacus.</p>
<p>Suspendisse a tincidunt lacus. Curabitur at urna sagittis, dictum ante sit amet, euismod magna. Sed rutrum massa id tortor commodo, vitae elementum turpis tempus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean purus turpis, venenatis a ullamcorper nec, tincidunt et massa. Integer posuere quam rutrum arcu vehicula imperdiet. Mauris ullamcorper quam vitae purus congue, quis euismod magna eleifend. Vestibulum semper vel augue eget tincidunt. Fusce eget justo sodales, dapibus odio eu, ultrices lorem. Duis condimentum lorem id eros commodo, in facilisis mauris scelerisque. Morbi sed auctor leo. Nullam volutpat a lacus quis pharetra. Nulla congue rutrum magna a ornare.</p>
<p>Aliquam in turpis accumsan, malesuada nibh ut, hendrerit justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Quisque sed erat nec justo posuere suscipit. Donec ut efficitur arcu, in malesuada neque. Nunc dignissim nisl massa, id vulputate nunc pretium nec. Quisque eget urna in risus suscipit ultricies. Pellentesque odio odio, tincidunt in eleifend sed, posuere a diam. Nam gravida nisl convallis semper elementum. Morbi vitae felis faucibus, vulputate orci placerat, aliquet nisi. Aliquam erat volutpat. Maecenas sagittis pulvinar purus, sed porta quam laoreet at.</p>
<h2 id="tip-2">Tip 2</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum. Sed ac faucibus dolor, scelerisque sollicitudin nisi. Cras purus urna, suscipit quis sapien eu, pulvinar tempor diam. Quisque risus orci, mollis id ante sit amet, gravida egestas nisl. Sed ac tempus magna. Proin in dui enim. Donec condimentum, sem id dapibus fringilla, tellus enim condimentum arcu, nec volutpat est felis vel metus. Vestibulum sit amet erat at nulla eleifend gravida.</p>
<p>Nullam vel molestie justo. Curabitur vitae efficitur leo. In hac habitasse platea dictumst. Sed pulvinar mauris dui, eget varius purus congue ac. Nulla euismod, lorem vel elementum dapibus, nunc justo porta mi, sed tempus est est vel tellus. Nam et enim eleifend, laoreet sem sit amet, elementum sem. Morbi ut leo congue, maximus velit ut, finibus arcu. In et libero cursus, rutrum risus non, molestie leo. Nullam congue quam et volutpat malesuada. Sed risus tortor, pulvinar et dictum nec, sodales non mi. Phasellus lacinia commodo laoreet. Nam mollis, erat in feugiat consectetur, purus eros egestas tellus, in auctor urna odio at nibh. Mauris imperdiet nisi ac magna convallis, at rhoncus ligula cursus.</p>
<p>Cras aliquam rhoncus ipsum, in hendrerit nunc mattis vitae. Duis vitae efficitur metus, ac tempus leo. Cras nec fringilla lacus. Quisque sit amet risus at ipsum pharetra commodo. Sed aliquam mauris at consequat eleifend. Praesent porta, augue sed viverra bibendum, neque ante euismod ante, in vehicula justo lorem ac eros. Suspendisse augue libero, venenatis eget tincidunt ut, malesuada at lorem. Donec vitae bibendum arcu. Aenean maximus nulla non pretium iaculis. Quisque imperdiet, nulla in pulvinar aliquet, velit quam ultrices quam, sit amet fringilla leo sem vel nunc. Mauris in lacinia lacus.</p>
<p>Suspendisse a tincidunt lacus. Curabitur at urna sagittis, dictum ante sit amet, euismod magna. Sed rutrum massa id tortor commodo, vitae elementum turpis tempus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean purus turpis, venenatis a ullamcorper nec, tincidunt et massa. Integer posuere quam rutrum arcu vehicula imperdiet. Mauris ullamcorper quam vitae purus congue, quis euismod magna eleifend. Vestibulum semper vel augue eget tincidunt. Fusce eget justo sodales, dapibus odio eu, ultrices lorem. Duis condimentum lorem id eros commodo, in facilisis mauris scelerisque. Morbi sed auctor leo. Nullam volutpat a lacus quis pharetra. Nulla congue rutrum magna a ornare.</p>
<p>Aliquam in turpis accumsan, malesuada nibh ut, hendrerit justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Quisque sed erat nec justo posuere suscipit. Donec ut efficitur arcu, in malesuada neque. Nunc dignissim nisl massa, id vulputate nunc pretium nec. Quisque eget urna in risus suscipit ultricies. Pellentesque odio odio, tincidunt in eleifend sed, posuere a diam. Nam gravida nisl convallis semper elementum. Morbi vitae felis faucibus, vulputate orci placerat, aliquet nisi. Aliquam erat volutpat. Maecenas sagittis pulvinar purus, sed porta quam laoreet at.</p>
</description>
</item>
<item>
<title>Example Page 2</title>
<link>https://vision-and-learning-lab-ualberta.github.io/courses/example/example2/</link>
<pubDate>Sun, 05 May 2019 00:00:00 +0100</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/courses/example/example2/</guid>
<description><p>Here are some more tips for getting started with Academic:</p>
<h2 id="tip-3">Tip 3</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum. Sed ac faucibus dolor, scelerisque sollicitudin nisi. Cras purus urna, suscipit quis sapien eu, pulvinar tempor diam. Quisque risus orci, mollis id ante sit amet, gravida egestas nisl. Sed ac tempus magna. Proin in dui enim. Donec condimentum, sem id dapibus fringilla, tellus enim condimentum arcu, nec volutpat est felis vel metus. Vestibulum sit amet erat at nulla eleifend gravida.</p>
<p>Nullam vel molestie justo. Curabitur vitae efficitur leo. In hac habitasse platea dictumst. Sed pulvinar mauris dui, eget varius purus congue ac. Nulla euismod, lorem vel elementum dapibus, nunc justo porta mi, sed tempus est est vel tellus. Nam et enim eleifend, laoreet sem sit amet, elementum sem. Morbi ut leo congue, maximus velit ut, finibus arcu. In et libero cursus, rutrum risus non, molestie leo. Nullam congue quam et volutpat malesuada. Sed risus tortor, pulvinar et dictum nec, sodales non mi. Phasellus lacinia commodo laoreet. Nam mollis, erat in feugiat consectetur, purus eros egestas tellus, in auctor urna odio at nibh. Mauris imperdiet nisi ac magna convallis, at rhoncus ligula cursus.</p>
<p>Cras aliquam rhoncus ipsum, in hendrerit nunc mattis vitae. Duis vitae efficitur metus, ac tempus leo. Cras nec fringilla lacus. Quisque sit amet risus at ipsum pharetra commodo. Sed aliquam mauris at consequat eleifend. Praesent porta, augue sed viverra bibendum, neque ante euismod ante, in vehicula justo lorem ac eros. Suspendisse augue libero, venenatis eget tincidunt ut, malesuada at lorem. Donec vitae bibendum arcu. Aenean maximus nulla non pretium iaculis. Quisque imperdiet, nulla in pulvinar aliquet, velit quam ultrices quam, sit amet fringilla leo sem vel nunc. Mauris in lacinia lacus.</p>
<p>Suspendisse a tincidunt lacus. Curabitur at urna sagittis, dictum ante sit amet, euismod magna. Sed rutrum massa id tortor commodo, vitae elementum turpis tempus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean purus turpis, venenatis a ullamcorper nec, tincidunt et massa. Integer posuere quam rutrum arcu vehicula imperdiet. Mauris ullamcorper quam vitae purus congue, quis euismod magna eleifend. Vestibulum semper vel augue eget tincidunt. Fusce eget justo sodales, dapibus odio eu, ultrices lorem. Duis condimentum lorem id eros commodo, in facilisis mauris scelerisque. Morbi sed auctor leo. Nullam volutpat a lacus quis pharetra. Nulla congue rutrum magna a ornare.</p>
<p>Aliquam in turpis accumsan, malesuada nibh ut, hendrerit justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Quisque sed erat nec justo posuere suscipit. Donec ut efficitur arcu, in malesuada neque. Nunc dignissim nisl massa, id vulputate nunc pretium nec. Quisque eget urna in risus suscipit ultricies. Pellentesque odio odio, tincidunt in eleifend sed, posuere a diam. Nam gravida nisl convallis semper elementum. Morbi vitae felis faucibus, vulputate orci placerat, aliquet nisi. Aliquam erat volutpat. Maecenas sagittis pulvinar purus, sed porta quam laoreet at.</p>
<h2 id="tip-4">Tip 4</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum. Sed ac faucibus dolor, scelerisque sollicitudin nisi. Cras purus urna, suscipit quis sapien eu, pulvinar tempor diam. Quisque risus orci, mollis id ante sit amet, gravida egestas nisl. Sed ac tempus magna. Proin in dui enim. Donec condimentum, sem id dapibus fringilla, tellus enim condimentum arcu, nec volutpat est felis vel metus. Vestibulum sit amet erat at nulla eleifend gravida.</p>
<p>Nullam vel molestie justo. Curabitur vitae efficitur leo. In hac habitasse platea dictumst. Sed pulvinar mauris dui, eget varius purus congue ac. Nulla euismod, lorem vel elementum dapibus, nunc justo porta mi, sed tempus est est vel tellus. Nam et enim eleifend, laoreet sem sit amet, elementum sem. Morbi ut leo congue, maximus velit ut, finibus arcu. In et libero cursus, rutrum risus non, molestie leo. Nullam congue quam et volutpat malesuada. Sed risus tortor, pulvinar et dictum nec, sodales non mi. Phasellus lacinia commodo laoreet. Nam mollis, erat in feugiat consectetur, purus eros egestas tellus, in auctor urna odio at nibh. Mauris imperdiet nisi ac magna convallis, at rhoncus ligula cursus.</p>
<p>Cras aliquam rhoncus ipsum, in hendrerit nunc mattis vitae. Duis vitae efficitur metus, ac tempus leo. Cras nec fringilla lacus. Quisque sit amet risus at ipsum pharetra commodo. Sed aliquam mauris at consequat eleifend. Praesent porta, augue sed viverra bibendum, neque ante euismod ante, in vehicula justo lorem ac eros. Suspendisse augue libero, venenatis eget tincidunt ut, malesuada at lorem. Donec vitae bibendum arcu. Aenean maximus nulla non pretium iaculis. Quisque imperdiet, nulla in pulvinar aliquet, velit quam ultrices quam, sit amet fringilla leo sem vel nunc. Mauris in lacinia lacus.</p>
<p>Suspendisse a tincidunt lacus. Curabitur at urna sagittis, dictum ante sit amet, euismod magna. Sed rutrum massa id tortor commodo, vitae elementum turpis tempus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean purus turpis, venenatis a ullamcorper nec, tincidunt et massa. Integer posuere quam rutrum arcu vehicula imperdiet. Mauris ullamcorper quam vitae purus congue, quis euismod magna eleifend. Vestibulum semper vel augue eget tincidunt. Fusce eget justo sodales, dapibus odio eu, ultrices lorem. Duis condimentum lorem id eros commodo, in facilisis mauris scelerisque. Morbi sed auctor leo. Nullam volutpat a lacus quis pharetra. Nulla congue rutrum magna a ornare.</p>
<p>Aliquam in turpis accumsan, malesuada nibh ut, hendrerit justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Quisque sed erat nec justo posuere suscipit. Donec ut efficitur arcu, in malesuada neque. Nunc dignissim nisl massa, id vulputate nunc pretium nec. Quisque eget urna in risus suscipit ultricies. Pellentesque odio odio, tincidunt in eleifend sed, posuere a diam. Nam gravida nisl convallis semper elementum. Morbi vitae felis faucibus, vulputate orci placerat, aliquet nisi. Aliquam erat volutpat. Maecenas sagittis pulvinar purus, sed porta quam laoreet at.</p>
</description>
</item>
<item>
<title>Investigating Pose Representations and Motion Contexts Modeling for 3D Motion Prediction</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/shuang_investigating_2022/</link>
<pubDate>Tue, 04 Jan 2022 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/shuang_investigating_2022/</guid>
<description></description>
</item>
<item>
<title>Our paper "Investigating Pose Representations and Motion Contexts Modeling for 3D Motion Prediction" is accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence!</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/shuang_tpami2022/</link>
<pubDate>Tue, 04 Jan 2022 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/shuang_tpami2022/</guid>
<description></description>
</item>
<item>
<title>Joint Semantic Mining for Weakly Supervised RGB-D Salient Object Detection</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/jingjing_joint_2021/</link>
<pubDate>Mon, 06 Dec 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/jingjing_joint_2021/</guid>
<description></description>
</item>
<item>
<title>Our paper "Joint Semantic Mining for Weakly Supervised RGB-D Salient Object Detection" is accepted by NeurIPS 2021</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/jingjing_neurips2021/</link>
<pubDate>Mon, 06 Dec 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/jingjing_neurips2021/</guid>
<description></description>
</item>
<item>
<title>3D Pose Estimation and Future Motion Prediction from 2D Images</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/ji_3d_2021/</link>
<pubDate>Mon, 01 Nov 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/ji_3d_2021/</guid>
<description></description>
</item>
<item>
<title>Our paper "3D pose estimation and future motion prediction from 2D images" is accepted by Pattern Recogntion</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/ji_pr_2021/</link>
<pubDate>Mon, 01 Nov 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/ji_pr_2021/</guid>
<description></description>
</item>
<item>
<title>CHASE: Robust Visual Tracking via Cell-Level Differentiable Neural Architecture Search</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/mojtaba_chase_2021/</link>
<pubDate>Sun, 26 Sep 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/mojtaba_chase_2021/</guid>
<description></description>
</item>
<item>
<title>Enhancing Human Motion Assessment by Self-supervised Representation Learning</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/mahdiar_enhancing_2021/</link>
<pubDate>Sun, 26 Sep 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/mahdiar_enhancing_2021/</guid>
<description></description>
</item>
<item>
<title>Our paper "CHASE: Robust Visual Tracking via Cell-Level Differentiable Neural Architecture Search" is accepted by BMVC 2021</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/mojtaba_bmvc2021/</link>
<pubDate>Sun, 26 Sep 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/mojtaba_bmvc2021/</guid>
<description></description>
</item>
<item>
<title>Our paper "Enhancing Human Motion Assessment by Self-supervised Representation Learning" is accepted by BMVC 2021</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/mahdiar_bmvc2021/</link>
<pubDate>Sun, 26 Sep 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/mahdiar_bmvc2021/</guid>
<description></description>
</item>
<item>
<title>Automated Generation of Accurate and Fluent Medical X-ray Reports</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/hoang_automated_emnlp/</link>
<pubDate>Fri, 27 Aug 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/hoang_automated_emnlp/</guid>
<description></description>
</item>
<item>
<title>EventHPE: Event-based 3D Human Pose and Shape Estimation</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/shihao_eventhpe_2021/</link>
<pubDate>Fri, 27 Aug 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/shihao_eventhpe_2021/</guid>
<description></description>
</item>
<item>
<title>Joint Visual and Audio Learning for Video Highlight Detection</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/tk_joint_2021/</link>
<pubDate>Fri, 27 Aug 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/tk_joint_2021/</guid>
<description></description>
</item>
<item>
<title>Our paper "Automated Generation of Accurate & Fluent Medical X-ray Reports" is accepted by EMNLP 2021</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/hoang_emnlp2021/</link>
<pubDate>Fri, 27 Aug 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/hoang_emnlp2021/</guid>
<description></description>
</item>
<item>
<title>Dual Learning Music Composition and Dance Choreography</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/shuangwu_dual_2021/</link>
<pubDate>Mon, 26 Jul 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/shuangwu_dual_2021/</guid>
<description></description>
</item>
<item>
<title>Our paper "Dual Learning Music Composition and Dance Choreography" is accepted by ACM Multimedia 2021</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/shuang_acmmm2021/</link>
<pubDate>Mon, 26 Jul 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/shuang_acmmm2021/</guid>
<description></description>
</item>
<item>
<title>Our paper "EventHPE: Event-based 3-D Human Pose Estimation" is accepted by ICCV 2021</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/shihao_iccv2021/</link>
<pubDate>Mon, 26 Jul 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/shihao_iccv2021/</guid>
<description></description>
</item>
<item>
<title>Our paper "Joint Visual and Audio Learning for Video Highlight Detection" is accepted by ICCV 2021</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/tk_iccv2021/</link>
<pubDate>Mon, 26 Jul 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/tk_iccv2021/</guid>
<description></description>
</item>
<item>
<title>Our paper "Calibrated RGB-D Salient Object Detection" is accepted by IEEE Conference on Computer Vision and Pattern Recognition 2021</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/wei_cvpr_2021a/</link>
<pubDate>Tue, 16 Mar 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/wei_cvpr_2021a/</guid>
<description></description>
</item>
<item>
<title>Our paper "Learning Calibrated Medical Image Segmentation via Multi-rater Agreement Modeling" is accepted by IEEE Conference on Computer Vision and Pattern Recognition 2021 (Best Paper Candidate)</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/wei_cvpr_2021b/</link>
<pubDate>Tue, 16 Mar 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/wei_cvpr_2021b/</guid>
<description></description>
</item>
<item>
<title>Calibrated RGB-D Salient Object Detection</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/wei_cvpr21_dcf/</link>
<pubDate>Mon, 01 Mar 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/wei_cvpr21_dcf/</guid>
<description></description>
</item>
<item>
<title>Learning Calibrated Medical Image Segmentation via Multi-rater Agreement Modeling</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/wei_cvpr21_mrnet/</link>
<pubDate>Mon, 01 Mar 2021 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/wei_cvpr21_mrnet/</guid>
<description></description>
</item>
<item>
<title>Our paper "Deep Learning for Visual Tracking: A Comprehensive Survey" is accepted by IEEE Transactions on Intelligent Transportation Systems (T-ITS)</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/mojtaba_tits2020/</link>
<pubDate>Fri, 27 Nov 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/mojtaba_tits2020/</guid>
<description></description>
</item>
<item>
<title>Action2Motion: Conditioned Generation of 3D Human Motions</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/chuan_action2motion_mm/</link>
<pubDate>Sat, 01 Aug 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/chuan_action2motion_mm/</guid>
<description></description>
</item>
<item>
<title>Our paper "Action2Motion: Conditioned Generation of 3-D Human Motions" is accepted by ACM Multimedia 2020</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/chuan_acmmm2020/</link>
<pubDate>Sat, 25 Jul 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/chuan_acmmm2020/</guid>
<description></description>
</item>
<item>
<title>Our paper "3D Human Shape Reconstruction from a Polarization Image" is accepted by ECCV 2020</title>
<link>https://vision-and-learning-lab-ualberta.github.io/post/zou_eccv2020/</link>
<pubDate>Sat, 04 Jul 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/post/zou_eccv2020/</guid>
<description></description>
</item>
<item>
<title>3D Human Shape Reconstruction from a Polarization Image</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/shihaozou_polarization_2020/</link>
<pubDate>Thu, 02 Jul 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/shihaozou_polarization_2020/</guid>
<description><!-- <div class="alert alert-note">
<div>
Click the <em>Cite</em> button above to demo the feature to enable visitors to import publication metadata into their reference management software.
</div>
</div>
<div class="alert alert-note">
<div>
Click the <em>Slides</em> button above to demo Academic&rsquo;s Markdown slides feature.
</div>
</div>
Supplementary notes can be added here, including [code and math](https://sourcethemes.com/academic/docs/writing-markdown-latex/). -->
</description>
</item>
<item>
<title>FALCONS: FAst Learner-grader for CONtorted poses in Sports</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/mahdiar_falcons_2020/</link>
<pubDate>Fri, 19 Jun 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/mahdiar_falcons_2020/</guid>
<description></description>
</item>
<item>
<title>SparseFusion: Dynamic Human Avatar Modeling from Sparse RGBD Images</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/xinxin_tmm_2020/</link>
<pubDate>Wed, 10 Jun 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/xinxin_tmm_2020/</guid>
<description></description>
</item>
<item>
<title>3D Pose Estimation and Future Motion Prediction from 2D Images</title>
<link>https://vision-and-learning-lab-ualberta.github.io/project/jiyang_multitask_2020/</link>
<pubDate>Mon, 01 Jun 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/project/jiyang_multitask_2020/</guid>
<description><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum. Sed ac faucibus dolor, scelerisque sollicitudin nisi. Cras purus urna, suscipit quis sapien eu, pulvinar tempor diam. Quisque risus orci, mollis id ante sit amet, gravida egestas nisl. Sed ac tempus magna. Proin in dui enim. Donec condimentum, sem id dapibus fringilla, tellus enim condimentum arcu, nec volutpat est felis vel metus. Vestibulum sit amet erat at nulla eleifend gravida.</p>
<p>Nullam vel molestie justo. Curabitur vitae efficitur leo. In hac habitasse platea dictumst. Sed pulvinar mauris dui, eget varius purus congue ac. Nulla euismod, lorem vel elementum dapibus, nunc justo porta mi, sed tempus est est vel tellus. Nam et enim eleifend, laoreet sem sit amet, elementum sem. Morbi ut leo congue, maximus velit ut, finibus arcu. In et libero cursus, rutrum risus non, molestie leo. Nullam congue quam et volutpat malesuada. Sed risus tortor, pulvinar et dictum nec, sodales non mi. Phasellus lacinia commodo laoreet. Nam mollis, erat in feugiat consectetur, purus eros egestas tellus, in auctor urna odio at nibh. Mauris imperdiet nisi ac magna convallis, at rhoncus ligula cursus.</p>
<p>Cras aliquam rhoncus ipsum, in hendrerit nunc mattis vitae. Duis vitae efficitur metus, ac tempus leo. Cras nec fringilla lacus. Quisque sit amet risus at ipsum pharetra commodo. Sed aliquam mauris at consequat eleifend. Praesent porta, augue sed viverra bibendum, neque ante euismod ante, in vehicula justo lorem ac eros. Suspendisse augue libero, venenatis eget tincidunt ut, malesuada at lorem. Donec vitae bibendum arcu. Aenean maximus nulla non pretium iaculis. Quisque imperdiet, nulla in pulvinar aliquet, velit quam ultrices quam, sit amet fringilla leo sem vel nunc. Mauris in lacinia lacus.</p>
<p>Suspendisse a tincidunt lacus. Curabitur at urna sagittis, dictum ante sit amet, euismod magna. Sed rutrum massa id tortor commodo, vitae elementum turpis tempus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean purus turpis, venenatis a ullamcorper nec, tincidunt et massa. Integer posuere quam rutrum arcu vehicula imperdiet. Mauris ullamcorper quam vitae purus congue, quis euismod magna eleifend. Vestibulum semper vel augue eget tincidunt. Fusce eget justo sodales, dapibus odio eu, ultrices lorem. Duis condimentum lorem id eros commodo, in facilisis mauris scelerisque. Morbi sed auctor leo. Nullam volutpat a lacus quis pharetra. Nulla congue rutrum magna a ornare.</p>
<p>Aliquam in turpis accumsan, malesuada nibh ut, hendrerit justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Quisque sed erat nec justo posuere suscipit. Donec ut efficitur arcu, in malesuada neque. Nunc dignissim nisl massa, id vulputate nunc pretium nec. Quisque eget urna in risus suscipit ultricies. Pellentesque odio odio, tincidunt in eleifend sed, posuere a diam. Nam gravida nisl convallis semper elementum. Morbi vitae felis faucibus, vulputate orci placerat, aliquet nisi. Aliquam erat volutpat. Maecenas sagittis pulvinar purus, sed porta quam laoreet at.</p>
</description>
</item>
<item>
<title>Fully automated leg movement tracking in freely moving insects using Feature Learning Leg Segmentation and Tracking (FLLIT)</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/ban-et-al-jo-ve-20/</link>
<pubDate>Wed, 01 Jan 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/ban-et-al-jo-ve-20/</guid>
<description></description>
</item>
<item>
<title>IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/lyu-et-al-mia-20/</link>
<pubDate>Wed, 01 Jan 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/lyu-et-al-mia-20/</guid>
<description></description>
</item>
<item>
<title>Improving retinal vessel segmentation with joint local loss by matting</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-pr-20/</link>
<pubDate>Wed, 01 Jan 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-pr-20/</guid>
<description></description>
</item>
<item>
<title>Least Squares Approximation via Sparse Subsampled Randomized Hadamard Transform</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/ten-et-al-tbd-20/</link>
<pubDate>Wed, 01 Jan 2020 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/ten-et-al-tbd-20/</guid>
<description></description>
</item>
<item>
<title>Towards Natural and Accurate Future Motion Prediction of Humans and Animals</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/shuangwu_hmr_2019/</link>
<pubDate>Mon, 01 Jul 2019 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/shuangwu_hmr_2019/</guid>
<description><!-- <div class="alert alert-note">
<div>
Click the <em>Cite</em> button above to demo the feature to enable visitors to import publication metadata into their reference management software.
</div>
</div>
<div class="alert alert-note">
<div>
Click the <em>Slides</em> button above to demo Academic&rsquo;s Markdown slides feature.
</div>
</div>
Supplementary notes can be added here, including [code and math](https://sourcethemes.com/academic/docs/writing-markdown-latex/). -->
</description>
</item>
<item>
<title>Hierarchical Motion Recurrent Network for Future Motion Prediction of Humans and Animals</title>
<link>https://vision-and-learning-lab-ualberta.github.io/project/shuangwu_hmr_2019/</link>
<pubDate>Sat, 27 Apr 2019 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/project/shuangwu_hmr_2019/</guid>
<description></description>
</item>
<item>
<title>Slides</title>
<link>https://vision-and-learning-lab-ualberta.github.io/slides/example/</link>
<pubDate>Tue, 05 Feb 2019 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/slides/example/</guid>
<description><h1 id="create-slides-in-markdown-with-academic">Create slides in Markdown with Academic</h1>
<p>
<a href="https://sourcethemes.com/academic/" target="_blank" rel="noopener">Academic</a> |
<a href="https://sourcethemes.com/academic/docs/managing-content/#create-slides" target="_blank" rel="noopener">Documentation</a></p>
<hr>
<h2 id="features">Features</h2>
<ul>
<li>Efficiently write slides in Markdown</li>
<li>3-in-1: Create, Present, and Publish your slides</li>
<li>Supports speaker notes</li>
<li>Mobile friendly slides</li>
</ul>
<hr>
<h2 id="controls">Controls</h2>
<ul>
<li>Next: <code>Right Arrow</code> or <code>Space</code></li>
<li>Previous: <code>Left Arrow</code></li>
<li>Start: <code>Home</code></li>
<li>Finish: <code>End</code></li>
<li>Overview: <code>Esc</code></li>
<li>Speaker notes: <code>S</code></li>
<li>Fullscreen: <code>F</code></li>
<li>Zoom: <code>Alt + Click</code></li>
<li>
<a href="https://github.com/hakimel/reveal.js#pdf-export" target="_blank" rel="noopener">PDF Export</a>: <code>E</code></li>
</ul>
<hr>
<h2 id="code-highlighting">Code Highlighting</h2>
<p>Inline code: <code>variable</code></p>
<p>Code block:</p>
<pre><code class="language-python">porridge = &quot;blueberry&quot;
if porridge == &quot;blueberry&quot;:
print(&quot;Eating...&quot;)
</code></pre>
<hr>
<h2 id="math">Math</h2>
<p>In-line math: $x + y = z$</p>
<p>Block math:</p>
<p>$$
f\left( x \right) = ;\frac{{2\left( {x + 4} \right)\left( {x - 4} \right)}}{{\left( {x + 4} \right)\left( {x + 1} \right)}}
$$</p>
<hr>
<h2 id="fragments">Fragments</h2>
<p>Make content appear incrementally</p>
<pre><code>{{% fragment %}} One {{% /fragment %}}
{{% fragment %}} **Two** {{% /fragment %}}
{{% fragment %}} Three {{% /fragment %}}
</code></pre>
<p>Press <code>Space</code> to play!</p>
<p><span class="fragment " >
One
</span>
<span class="fragment " >
<strong>Two</strong>
</span>
<span class="fragment " >
Three
</span></p>
<hr>
<p>A fragment can accept two optional parameters:</p>
<ul>
<li><code>class</code>: use a custom style (requires definition in custom CSS)</li>
<li><code>weight</code>: sets the order in which a fragment appears</li>
</ul>
<hr>
<h2 id="speaker-notes">Speaker Notes</h2>
<p>Add speaker notes to your presentation</p>
<pre><code class="language-markdown">{{% speaker_note %}}
- Only the speaker can read these notes
- Press `S` key to view
{{% /speaker_note %}}
</code></pre>
<p>Press the <code>S</code> key to view the speaker notes!</p>
<aside class="notes">
<ul>
<li>Only the speaker can read these notes</li>
<li>Press <code>S</code> key to view</li>
</ul>
</aside>
<hr>
<h2 id="themes">Themes</h2>
<ul>
<li>black: Black background, white text, blue links (default)</li>
<li>white: White background, black text, blue links</li>
<li>league: Gray background, white text, blue links</li>
<li>beige: Beige background, dark text, brown links</li>
<li>sky: Blue background, thin dark text, blue links</li>
</ul>
<hr>
<ul>
<li>night: Black background, thick white text, orange links</li>
<li>serif: Cappuccino background, gray text, brown links</li>
<li>simple: White background, black text, blue links</li>
<li>solarized: Cream-colored background, dark green text, blue links</li>
</ul>
<hr>
<section data-noprocess data-shortcode-slide
data-background-image="/img/boards.jpg"
>
<h2 id="custom-slide">Custom Slide</h2>
<p>Customize the slide style and background</p>
<pre><code class="language-markdown">{{&lt; slide background-image=&quot;/img/boards.jpg&quot; &gt;}}
{{&lt; slide background-color=&quot;#0000FF&quot; &gt;}}
{{&lt; slide class=&quot;my-style&quot; &gt;}}
</code></pre>
<hr>
<h2 id="custom-css-example">Custom CSS Example</h2>
<p>Let&rsquo;s make headers navy colored.</p>
<p>Create <code>assets/css/reveal_custom.css</code> with:</p>
<pre><code class="language-css">.reveal section h1,
.reveal section h2,
.reveal section h3 {
color: navy;
}
</code></pre>
<hr>
<h1 id="questions">Questions?</h1>
<p>
<a href="https://spectrum.chat/academic" target="_blank" rel="noopener">Ask</a></p>
<p>
<a href="https://sourcethemes.com/academic/docs/managing-content/#create-slides" target="_blank" rel="noopener">Documentation</a></p>
</description>
</item>
<item>
<title>Fully automated leg tracking of Drosophila neurodegeneration models reveals distinct conserved movement signatures</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/wu-et-al-plos-bio-19/</link>
<pubDate>Tue, 01 Jan 2019 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/wu-et-al-plos-bio-19/</guid>
<description></description>
</item>
<item>
<title>Multivariate Regression with Gross Errors on Manifold-valued Data</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-tpami-19/</link>
<pubDate>Tue, 01 Jan 2019 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-tpami-19/</guid>
<description></description>
</item>
<item>
<title>Multi-modal Multi-task Learning for Automatic Dietary Assessment</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/liu-et-al-aaai-18/</link>
<pubDate>Mon, 01 Jan 2018 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/liu-et-al-aaai-18/</guid>
<description></description>
</item>
<item>
<title>Supervised Segmentation of Un-annotated Retinal Fundus Images by Synthesis</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-tmi-18/</link>
<pubDate>Mon, 01 Jan 2018 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-tmi-18/</guid>
<description></description>
</item>
<item>
<title>Synthesizing Retinal and Neuronal Images with Generative Adversarial Nets</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-med-ia-18/</link>
<pubDate>Mon, 01 Jan 2018 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-med-ia-18/</guid>
<description></description>
</item>
<item>
<title>Too Far to See? Not Really! Pedestrian Detection with Scale-aware Localization Policy</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-tip-18/</link>
<pubDate>Mon, 01 Jan 2018 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-tip-18/</guid>
<description></description>
</item>
<item>
<title>Transduction on Directed Graphs via Absorbing Random Walks</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/de-et-al-tpami-18/</link>
<pubDate>Mon, 01 Jan 2018 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/de-et-al-tpami-18/</guid>
<description></description>
</item>
<item>
<title>Fusion of Magnetic and Vision sensors for indoor localization: Infrastructure-free and More Effective</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/liu-et-al-tmm-17/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/liu-et-al-tmm-17/</guid>
<description></description>
</item>
<item>
<title>Hand Action Detection from Ego-centric Depth Sequences</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/xu-gov-che-pr-17/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/xu-gov-che-pr-17/</guid>
<description></description>
</item>
<item>
<title>Lie-X: Depth Image Based Articulated Object Pose Estimation, Tracking, and Action Recognition on Lie Groups</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/xu-et-al-ijcv-17/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/xu-et-al-ijcv-17/</guid>
<description></description>
</item>
<item>
<title>Multiview and Multimodal Pervasive Indoor Localization</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/liu-et-al-mm-17/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/liu-et-al-mm-17/</guid>
<description></description>
</item>
<item>
<title>Pose Estimation from Line Correspondences: A Complete Analysis and A Series of Solutions</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/xu-et-al-tpami-17/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/xu-et-al-tpami-17/</guid>
<description></description>
</item>
<item>
<title>Quantitative 3D analysis of complex single border cell behaviors in coordinated collective cell migration</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/cli-et-al-nc-17/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/cli-et-al-nc-17/</guid>
<description></description>
</item>
<item>
<title>Quantitative localization of a Golgi protein by imaging its fluorescence center of mass</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/tie-et-al-jo-ve-17/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/tie-et-al-jo-ve-17/</guid>
<description></description>
</item>
<item>
<title>Segment 2D and 3D Filaments by Learning Structured and Contextual Features</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/gu-et-al-tmi-17/</link>
<pubDate>Sun, 01 Jan 2017 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/gu-et-al-tmi-17/</guid>
<description></description>
</item>
<item>
<title></title>
<link>https://vision-and-learning-lab-ualberta.github.io/archive/opening_postdoc/</link>
<pubDate>Wed, 20 Apr 2016 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/archive/opening_postdoc/</guid>
<description><h2 id="joining-us">Joining us&hellip;</h2>
<p>The Vision &amp; Learning Lab at the ECE Dept. University of Alberta, is inviting outstanding Postdoc candidates to join us.</p>
<p>We are setting up a new lab at the ECE Dept., University of Alberta, focusing on exciting research topics in computer vision and machine learning. We are looking for exceptional Postdocs to join us.</p>
<p>Further information about the PI, Dr. Li Cheng, can be found below, or via
<a href="https://www.ece.ualberta.ca/~lcheng5/" target="_blank" rel="noopener">https://www.ece.ualberta.ca/~lcheng5/</a> or by direct inquiries to
<a href="mailto:[email protected]">[email protected]</a>.</p>
<p>Potential candidates are requested to email their CVs (in PDF) to Li Cheng (
<a href="mailto:[email protected]">[email protected]</a>).</p>
<h2 id="about-the-pi">About the PI&hellip;</h2>
<p>Li CHENG is an associate professor with the ECE Dept., University of Alberta, Canada. His research expertise is mainly in computer vision and machine learning, with application focus in both visual behavior analysis and biomedical image analysis. His research work has resulted in over 90 referred papers including those published at journals such as IEEE Trans. Pattern Analysis and Machine Intelligence, International Journal of Computer Vision, as well as conferences such as ICML, NIPS, ICCV, CVPR, MICCAI, and AAAI. He is a senior member of IEEE.</p>
</description>
</item>
<item>
<title>A Graph-theoretical Approach for Tracing Filamentary Structures in Neuronal and Retinal Images</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/de-et-al-tmi-16/</link>
<pubDate>Fri, 01 Jan 2016 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/de-et-al-tmi-16/</guid>
<description></description>
</item>
<item>
<title>A novel imaging method for quantitative Golgi localization reveals differential intra-Golgi trafficking of secretory cargos</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/tie-et-al-m-bo-c-16/</link>
<pubDate>Fri, 01 Jan 2016 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/tie-et-al-m-bo-c-16/</guid>
<description></description>
</item>
<item>
<title>Action Recognition in Still Images with Minimum Annotation Efforts</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-tip-16/</link>
<pubDate>Fri, 01 Jan 2016 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-tip-16/</guid>
<description></description>
</item>
<item>
<title>Estimate Hand Poses Efficiently from Single Depth Images</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/xu-et-al-ijcv-16/</link>
<pubDate>Fri, 01 Jan 2016 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/xu-et-al-ijcv-16/</guid>
<description></description>
</item>
<item>
<title>Incremental Regularized Least Squares for Dimensionality Reduction of Large-Scale Data</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-sisc-16/</link>
<pubDate>Fri, 01 Jan 2016 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-sisc-16/</guid>
<description></description>
</item>
<item>
<title>NeuronCyto II: An Automatic and Quantitative Solution for Crossover Neural Cells in High Throughput Screening</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/ong-et-al-cyto-16/</link>
<pubDate>Fri, 01 Jan 2016 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/ong-et-al-cyto-16/</guid>
<description></description>
</item>
<item>
<title>Recognizing Complex Activities by a Probabilistic Interval-based Model</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/liu-et-al-aaai-16/</link>
<pubDate>Fri, 01 Jan 2016 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/liu-et-al-aaai-16/</guid>
<description></description>
</item>
<item>
<title>An Efficient Self-Tuning Multiclass Classification Approach</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/qia-gon-che-cai-15/</link>
<pubDate>Thu, 01 Jan 2015 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/qia-gon-che-cai-15/</guid>
<description></description>
</item>
<item>
<title>Automated Image Based Prominent Nucleoli Detection</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/yap-et-al-jpi-15/</link>
<pubDate>Thu, 01 Jan 2015 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/yap-et-al-jpi-15/</guid>
<description></description>
</item>
<item>
<title>GHand: A GPU algorithm for realtime hand pose estimation using depth camera</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/nan-chi-che-eurographics-15/</link>
<pubDate>Thu, 01 Jan 2015 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/nan-chi-che-eurographics-15/</guid>
<description></description>
</item>
<item>
<title>Integrated Foreground Segmentation and Boundary Matting for Live Videos</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/gon-qia-che-tip-15/</link>
<pubDate>Thu, 01 Jan 2015 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/gon-qia-che-tip-15/</guid>
<description></description>
</item>
<item>
<title>Learning to Boost Filamentary Structure Segmentation</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/gu-che-iccv-15/</link>
<pubDate>Thu, 01 Jan 2015 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/gu-che-iccv-15/</guid>
<description></description>
</item>
<item>
<title>Robust Multivariate Regression with Grossly Corrupted Observations and Its Application to Personality Prediction</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/zha-che-zhu-acml-15/</link>
<pubDate>Thu, 01 Jan 2015 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/zha-che-zhu-acml-15/</guid>
<description></description>
</item>
<item>
<title>A Random-Forest Random Field Approach for Cellular Image Segmentation</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/jin-et-al-isbi-14/</link>
<pubDate>Wed, 01 Jan 2014 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/jin-et-al-isbi-14/</guid>
<description></description>
</item>
<item>
<title>A retinal vessel boundary tracking method based on Bayesian theory and multi-scale line detection</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-cmig-14/</link>
<pubDate>Wed, 01 Jan 2014 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/zha-et-al-cmig-14/</guid>
<description></description>
</item>
<item>
<title>Myopia in Asian Subjects with Primary Angle Closure: Implications for Glaucoma Trends in East Asia</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/yon-et-al-optho-14/</link>
<pubDate>Wed, 01 Jan 2014 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/yon-et-al-optho-14/</guid>
<description></description>
</item>
<item>
<title>Recognizing Flu-like Symptoms from Videos</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/thi-et-al-bmcbioinfo-14/</link>
<pubDate>Wed, 01 Jan 2014 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/thi-et-al-bmcbioinfo-14/</guid>
<description></description>
</item>
<item>
<title>Semi-supervised Domain Adaptation on Manifolds</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/che-pan-tnnls-14/</link>
<pubDate>Wed, 01 Jan 2014 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/che-pan-tnnls-14/</guid>
<description></description>
</item>
<item>
<title>Tracing Retinal Blood Vessels by Matrix-Forest Theorem of Directed Graphs</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/che-et-al-miccai-14/</link>
<pubDate>Wed, 01 Jan 2014 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/che-et-al-miccai-14/</guid>
<description></description>
</item>
<item>
<title>Tracing retinal vessel trees by transductive inference</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/de-li-che-bmcbioinfo-14/</link>
<pubDate>Wed, 01 Jan 2014 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/de-li-che-bmcbioinfo-14/</guid>
<description></description>
</item>
<item>
<title>Anterior segment optical coherence tomography parameters in subtypes of primary angle closure</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/guz-et-al-iovs-13/</link>
<pubDate>Tue, 01 Jan 2013 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/guz-et-al-iovs-13/</guid>
<description></description>
</item>
<item>
<title>Automated Tracing of Retinal Blood Vessels Using Graphical Models</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/jay-et-al-scia-13/</link>
<pubDate>Tue, 01 Jan 2013 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/jay-et-al-scia-13/</guid>
<description></description>
</item>
<item>
<title>Editorial of the Special issue: Machine Learning in Motion Analysis: New Advances</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/pie-et-al-ivc-13/</link>
<pubDate>Tue, 01 Jan 2013 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/pie-et-al-ivc-13/</guid>
<description></description>
</item>
<item>
<title>Efficient Hand Pose Estimation from a Single Depth Image</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/xu-che-iccv-13/</link>
<pubDate>Tue, 01 Jan 2013 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/xu-che-iccv-13/</guid>
<description></description>
</item>
<item>
<title>Exploiting Syntactic, Semantic, and Lexical Regularities in Language Modeling via Directed Markov Random Fields</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/wan-et-al-ci-13/</link>
<pubDate>Tue, 01 Jan 2013 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/wan-et-al-ci-13/</guid>
<description></description>
</item>
<item>
<title>Finding Distinctive Shape Features for Hematoma Classification in Brain CT Images</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/gon-et-al-ictai-13/</link>
<pubDate>Tue, 01 Jan 2013 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/gon-et-al-ictai-13/</guid>
<description></description>
</item>
<item>
<title>Riemannian Similarity Learning</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/che-icml-13/</link>
<pubDate>Tue, 01 Jan 2013 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/che-icml-13/</guid>
<description></description>
</item>
<item>
<title>Subgrouping of Primary Angle-Closure Suspects Based on Anterior Segment Optical Coherence Tomography Parameters</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/non-et-al-optho-13/</link>
<pubDate>Tue, 01 Jan 2013 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/non-et-al-optho-13/</guid>
<description></description>
</item>
<item>
<title>A Bag-of-Words Model for Cellular Image Segmentation</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/che-et-al-springerbkchapt-12/</link>
<pubDate>Sun, 01 Jan 2012 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/che-et-al-springerbkchapt-12/</guid>
<description></description>
</item>
<item>
<title>Integrating Local Action Elements for Action Analysis</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/thi-et-al-cviu-12/</link>
<pubDate>Sun, 01 Jan 2012 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/thi-et-al-cviu-12/</guid>
<description></description>
</item>
<item>
<title>Structured learning of local features for human action classification and localization</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/thi-et-al-ivc-12/</link>
<pubDate>Sun, 01 Jan 2012 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/thi-et-al-ivc-12/</guid>
<description></description>
</item>
<item>
<title>Discriminative Cellular Segmentation for Microscopic Images</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/che-et-al-miccai-11/</link>
<pubDate>Sat, 01 Jan 2011 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/che-et-al-miccai-11/</guid>
<description></description>
</item>
<item>
<title>Discriminative Human Action Segmentation and Recognition using SMMs</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/shi-et-al-ijcv-11/</link>
<pubDate>Sat, 01 Jan 2011 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/shi-et-al-ijcv-11/</guid>
<description></description>
</item>
<item>
<title>Elastic Sequence Correlation for Human Action Analysis</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/wan-che-wan-tip-11/</link>
<pubDate>Sat, 01 Jan 2011 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/wan-che-wan-tip-11/</guid>
<description></description>
</item>
<item>
<title>Foreground Segmentation of Live Videos using Locally Competing 1SVMs</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/gon-che-cvpr-11/</link>
<pubDate>Sat, 01 Jan 2011 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/gon-che-cvpr-11/</guid>
<description></description>
</item>
<item>
<title>Incorporating Estimated Motion in Real-time Background Subtraction</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/gon-che-icip-11/</link>
<pubDate>Sat, 01 Jan 2011 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/gon-che-icip-11/</guid>
<description></description>
</item>
<item>
<title>Real-time Discriminative Background Subtraction</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/che-et-al-tip-11/</link>
<pubDate>Sat, 01 Jan 2011 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/che-et-al-tip-11/</guid>
<description></description>
</item>
<item>
<title>Efficient Learning to Label Images</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/jia-che-liu-wan-icpr-10/</link>
<pubDate>Fri, 01 Jan 2010 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/jia-che-liu-wan-icpr-10/</guid>
<description></description>
</item>
<item>
<title>Human Action Recognition and Localization in Video using Structured Learning of Local Space-Time Features</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/thi-che-zha-wan-sat-avss-10/</link>
<pubDate>Fri, 01 Jan 2010 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/thi-che-zha-wan-sat-avss-10/</guid>
<description></description>
</item>
<item>
<title>Human Action Recognition from Boosted Pose Estimation</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/wan-che-thi-zha-dicta-10/</link>
<pubDate>Fri, 01 Jan 2010 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/wan-che-thi-zha-dicta-10/</guid>
<description></description>
</item>
<item>
<title>Implicit Motion-Shape Model: A generic approach for action matching</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/thi-che-zha-wan-icpr-10/</link>
<pubDate>Fri, 01 Jan 2010 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/thi-che-zha-wan-icpr-10/</guid>
<description></description>
</item>
<item>
<title>Learning Graph Matching</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/cae-et-al-tpami-09/</link>
<pubDate>Mon, 01 Jun 2009 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/cae-et-al-tpami-09/</guid>
<description></description>
</item>
<item>
<title>Human Body Articulation for Action Recognition in Video Sequences</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/thi-et-al-avss-09/</link>
<pubDate>Thu, 01 Jan 2009 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/thi-et-al-avss-09/</guid>
<description></description>
</item>
<item>
<title>Inference of the Structural Credit Risk Model using MLE</title>
<link>https://vision-and-learning-lab-ualberta.github.io/publication/li-che-sch-cife-09/</link>
<pubDate>Thu, 01 Jan 2009 00:00:00 +0000</pubDate>
<guid>https://vision-and-learning-lab-ualberta.github.io/publication/li-che-sch-cife-09/</guid>