-
Notifications
You must be signed in to change notification settings - Fork 1
/
boxsup_spf_scannet.yaml
115 lines (107 loc) · 2.07 KB
/
boxsup_spf_scannet.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
train:
seed: 1999
epochs: &epoch 512
interval: 16
pretrain: pretrains/scannetv2/best_pretrain_softgroup_spp_pool.pth
test:
seed: 1999
test_topk_per_scene: 100
test_score_thresh: 0.0
test_npoint_thresh: 100
dataloader:
train:
batch_size: 10
num_workers: 10
persistent_workers: True
val:
batch_size: 1
num_workers: 4
persistent_workers: True
test:
batch_size: 1
num_workers: 4
persistent_workers: True
data:
train:
type: scannetv2
data_root: data/scannetv2
prefix: train
suffix: _inst_nostuff.pth
label_type: &label_type_ gaussian_process_kl_pseudo_labels
training: True
mode: 4
with_elastic: True
use_xyz: True
repeat: 1
voxel_cfg:
scale: 50
spatial_shape: [128, 512]
max_npoint: 250000
val:
type: scannetv2
data_root: data/scannetv2
prefix: val
suffix: _inst_nostuff.pth
label_type: *label_type_
training: False
mode: 4
with_elastic: False
use_xyz: True
voxel_cfg:
scale: 50
spatial_shape: [128, 512]
max_npoint: 250000
test:
type: scannetv2
data_root: data/scannetv2
prefix: val
suffix: _inst_nostuff.pth
label_type: *label_type_
training: False
mode: 4
with_elastic: False
use_xyz: True
voxel_cfg:
scale: 50
spatial_shape: [128, 512]
max_npoint: 250000
model:
input_channel: 6
blocks: 5
block_reps: 2
media: 32
normalize_before: True
return_blocks: True
pool: mean
num_class: 18
decoder:
num_layer: 6
num_query: 400
d_model: 256
nhead: 8
hidden_dim: 1024
dropout: 0.0
activation_fn: gelu
iter_pred: True
attn_mask: True
pe: False
criterion:
loss_weight: [0.5, 1.0, 1.0, 0.5, 0.2]
cost_weight: [0.5, 1.0, 1.0]
non_object_weight: 0.1
test_cfg:
topk_insts: 100
score_thr: 0.0
npoint_thr: 100
norm_eval: False
fix_module: []
optimizer:
type: AdamW
lr: 0.0002
weight_decay: 0.05
lr_scheduler:
type: PolyLR
max_iters: *epoch
power: 0.9
constant_ending: 0.0
fp16: True