-
Notifications
You must be signed in to change notification settings - Fork 0
/
gradio_app.py
executable file
·523 lines (450 loc) · 18.3 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import argparse
import glob
import os
import re
import signal
import subprocess
import tempfile
import time
from dataclasses import dataclass
from datetime import datetime
# Basic types
from typing import Any, Dict, Optional
import gradio as gr
import psutil
import trimesh
from threestudio.utils.config import load_config
def tail(f, window=20):
# Returns the last `window` lines of file `f`.
if window == 0:
return []
BUFSIZ = 1024
f.seek(0, 2)
remaining_bytes = f.tell()
size = window + 1
block = -1
data = []
while size > 0 and remaining_bytes > 0:
if remaining_bytes - BUFSIZ > 0:
# Seek back one whole BUFSIZ
f.seek(block * BUFSIZ, 2)
# read BUFFER
bunch = f.read(BUFSIZ)
else:
# file too small, start from beginning
f.seek(0, 0)
# only read what was not read
bunch = f.read(remaining_bytes)
bunch = bunch.decode("utf-8")
data.insert(0, bunch)
size -= bunch.count("\n")
remaining_bytes -= BUFSIZ
block -= 1
return "\n".join("".join(data).splitlines()[-window:])
@dataclass
class ExperimentStatus:
pid: Optional[int] = None
progress: str = ""
log: str = ""
output_image: Optional[str] = None
output_video: Optional[str] = None
output_mesh: Optional[str] = None
def tolist(self):
return [
self.pid,
self.progress,
self.log,
self.output_image,
self.output_video,
self.output_mesh,
]
EXP_ROOT_DIR = "outputs-gradio"
DEFAULT_PROMPT = "a delicious hamburger"
model_name_config = [
("SJC (Stable Diffusion)", "configs/gradio/sjc.yaml"),
("DreamFusion (DeepFloyd-IF)", "configs/gradio/dreamfusion-if.yaml"),
("DreamFusion (Stable Diffusion)", "configs/gradio/dreamfusion-sd.yaml"),
("TextMesh (DeepFloyd-IF)", "configs/gradio/textmesh-if.yaml"),
("Latent-NeRF (Stable Diffusion)", "configs/gradio/latentnerf.yaml"),
("Fantasia3D (Stable Diffusion, Geometry Only)", "configs/gradio/fantasia3d.yaml"),
]
model_list = [m[0] for m in model_name_config]
model_config: Dict[str, Dict[str, Any]] = {}
for model_name, config_path in model_name_config:
config = {"path": config_path}
with open(config_path) as f:
config["yaml"] = f.read()
config["obj"] = load_config(
config["yaml"],
# set name and tag to dummy values to avoid creating new directories
cli_args=[
"name=dummy",
"tag=dummy",
"use_timestamp=false",
f"exp_root_dir={EXP_ROOT_DIR}",
"system.prompt_processor.prompt=placeholder",
],
from_string=True,
)
model_config[model_name] = config
def on_model_selector_change(model_name):
return [
model_config[model_name]["yaml"],
model_config[model_name]["obj"].system.guidance.guidance_scale,
]
def get_current_status(process, trial_dir, alive_path):
status = ExperimentStatus()
status.pid = process.pid
# write the current timestamp to the alive file
# the watcher will know the last active time of this process from this timestamp
if os.path.exists(os.path.dirname(alive_path)):
alive_fp = open(alive_path, "w")
alive_fp.seek(0)
alive_fp.write(str(time.time()))
alive_fp.flush()
log_path = os.path.join(trial_dir, "logs")
progress_path = os.path.join(trial_dir, "progress")
save_path = os.path.join(trial_dir, "save")
# read current progress from the progress file
# the progress file is created by GradioCallback
if os.path.exists(progress_path):
status.progress = open(progress_path).read()
else:
status.progress = "Setting up everything ..."
# read the last 10 lines of the log file
if os.path.exists(log_path):
status.log = tail(open(log_path, "rb"), window=10)
else:
status.log = ""
# get the validation image and testing video if they exist
if os.path.exists(save_path):
images = glob.glob(os.path.join(save_path, "*.png"))
steps = [int(re.match(r"it(\d+)-0\.png", os.path.basename(f)).group(1)) for f in images]
images = sorted(list(zip(images, steps)), key=lambda x: x[1])
if len(images) > 0:
status.output_image = images[-1][0]
videos = glob.glob(os.path.join(save_path, "*.mp4"))
steps = [int(re.match(r"it(\d+)-test\.mp4", os.path.basename(f)).group(1)) for f in videos]
videos = sorted(list(zip(videos, steps)), key=lambda x: x[1])
if len(videos) > 0:
status.output_video = videos[-1][0]
export_dirs = glob.glob(os.path.join(save_path, "*export"))
steps = [int(re.match(r"it(\d+)-export", os.path.basename(f)).group(1)) for f in export_dirs]
export_dirs = sorted(list(zip(export_dirs, steps)), key=lambda x: x[1])
if len(export_dirs) > 0:
obj = glob.glob(os.path.join(export_dirs[-1][0], "*.obj"))
if len(obj) > 0:
# FIXME
# seems the gr.Model3D cannot load our manually saved obj file
# here we load the obj and save it to a temporary file using trimesh
mesh_path = tempfile.NamedTemporaryFile(suffix=".obj", delete=False)
trimesh.load(obj[0]).export(mesh_path.name)
status.output_mesh = mesh_path.name
return status
def run(
model_name: str,
config: str,
prompt: str,
guidance_scale: float,
seed: int,
max_steps: int,
save_ckpt: bool,
save_root: str,
):
# update status every 1 second
status_update_interval = 1
# save the config to a temporary file
config_file = tempfile.NamedTemporaryFile()
with open(config_file.name, "w") as f:
f.write(config)
# manually assign the output directory, name and tag so that we know the trial directory
name = os.path.basename(model_config[model_name]["path"]).split(".")[0]
tag = datetime.now().strftime("%Y%m%d-%H%M%S")
trial_dir = os.path.join(save_root, EXP_ROOT_DIR, name, tag)
alive_path = os.path.join(trial_dir, "alive")
# spawn the training process
gpu = os.environ.get("CUDA_VISIBLE_DEVICES", "0")
process = subprocess.Popen(
f"python launch.py --config {config_file.name} --train --gpu {gpu} --gradio trainer.enable_progress_bar=false".split()
+ [
f'name="{name}"',
f'tag="{tag}"',
f"exp_root_dir={os.path.join(save_root, EXP_ROOT_DIR)}",
"use_timestamp=false",
f'system.prompt_processor.prompt="{prompt}"',
f"system.guidance.guidance_scale={guidance_scale}",
f"seed={seed}",
f"trainer.max_steps={max_steps}",
]
+ (["checkpoint.every_n_train_steps=${trainer.max_steps}"] if save_ckpt else []),
)
# spawn the watcher process
watch_process = subprocess.Popen(
"python gradio_app.py watch".split() + ["--pid", f"{process.pid}", "--trial-dir", f"{trial_dir}"]
)
# update status (progress, log, image, video) every status_update_interval senconds
# button status: Run -> Stop
while process.poll() is None:
time.sleep(status_update_interval)
yield get_current_status(process, trial_dir, alive_path).tolist() + [
gr.update(visible=False),
gr.update(value="Stop", variant="stop", visible=True),
]
# wait for the processes to finish
process.wait()
watch_process.wait()
# update status one last time
# button status: Stop / Reset -> Run
status = get_current_status(process, trial_dir, alive_path)
status.progress = "Finished."
yield status.tolist() + [
gr.update(value="Run", variant="primary", visible=True),
gr.update(visible=False),
]
def stop_run(pid):
# kill the process
print(f"Trying to kill process {pid} ...")
try:
os.kill(pid, signal.SIGKILL)
except Exception:
print(f"Exception when killing process {pid}.")
# button status: Stop -> Reset
return [
# gr.update(
# value="Reset (refresh the page if in queue)",
# variant="secondary",
# visible=True,
# just ask the user to refresh the page
# ),
gr.update(
value="Please Refresh the Page",
variant="secondary",
visible=True,
interactive=False,
),
gr.update(visible=False),
]
def launch(
port,
listen=False,
hf_space=False,
self_deploy=False,
save_ckpt=False,
save_root=".",
):
self_deploy = self_deploy or "TS_SELF_DEPLOY" in os.environ
css = """
#config-accordion, #logs-accordion {color: black !important;}
.dark #config-accordion, .dark #logs-accordion {color: white !important;}
.stop {background: darkred !important;}
"""
with gr.Blocks(
title="threestudio - Web Demo",
theme=gr.themes.Monochrome(),
css=css,
) as demo:
with gr.Row(equal_height=True):
if hf_space:
header = """
# threestudio Text-to-3D Web Demo
<div>
<a style="display: inline-block;" href="https://github.com/threestudio-project/threestudio"><img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white"></a>
<a style="display: inline-block;" href="https://huggingface.co/spaces/bennyguo/threestudio?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space%20to%20skip%20the%20queue-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
### Usage
- Select a model from the dropdown menu. If you duplicate this space and would like to use models based on DeepFloyd-IF, you need to [accept the license](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0) and set `HUGGING_FACE_HUB_TOKEN` in `Repository secrets` in your space setting. You may also set `TS_SELF_DEPLOY` to enable changing arbitrary configurations.
- Input a text prompt and hit the `Run` button to start.
- Video and mesh export (not supported for SJC and Latent-NeRF) are available after the training process is finished.
- **IMPORTANT NOTE: Keep this tab active when running the model.**
"""
else:
header = """
# threestudio Text-to-3D Web Demo
### Usage
- Select a model from the dropdown menu.
- Input a text prompt and hit the `Run` button to start.
- Video and mesh export (not supported for SJC and Latent-NeRF) are available after the training process is finished.
- **IMPORTANT NOTE: Keep this tab active when running the model.**
"""
gr.Markdown(header)
with gr.Row(equal_height=False):
pid = gr.State()
with gr.Column(scale=1):
# generation status
status = gr.Textbox(
value="Hit the Run button to start.",
label="Status",
lines=1,
max_lines=1,
)
# model selection dropdown
model_selector = gr.Dropdown(
value=model_list[0],
choices=model_list,
label="Select a model",
)
# prompt input
prompt_input = gr.Textbox(value=DEFAULT_PROMPT, label="Input prompt")
# guidance scale slider
guidance_scale_input = gr.Slider(
minimum=0.0,
maximum=100.0,
value=model_config[model_selector.value]["obj"].system.guidance.guidance_scale,
step=0.5,
label="Guidance scale",
)
# seed slider
seed_input = gr.Slider(minimum=0, maximum=2147483647, value=0, step=1, label="Seed")
max_steps_input = gr.Slider(
minimum=1,
maximum=20000 if self_deploy else 5000,
value=10000 if self_deploy else 5000,
step=1,
label="Number of training steps",
)
save_ckpt_checkbox = gr.Checkbox(
value=save_ckpt,
label="Save Checkpoints",
visible=False,
interactive=False,
)
save_root_state = gr.State(value=save_root)
# full config viewer
with gr.Accordion("See full configurations", open=False, elem_id="config-accordion"):
config_editor = gr.Code(
value=model_config[model_selector.value]["yaml"],
language="yaml",
lines=10,
interactive=self_deploy, # disable editing if in HF space
)
# load config on model selection change
model_selector.change(
fn=on_model_selector_change,
inputs=model_selector,
outputs=[config_editor, guidance_scale_input],
queue=False,
)
run_btn = gr.Button(value="Run", variant="primary")
stop_btn = gr.Button(value="Stop", variant="stop", visible=False)
with gr.Column(scale=1):
with gr.Accordion("See terminal logs", open=False, elem_id="logs-accordion"):
# logs
logs = gr.Textbox(label="Logs", lines=10)
# validation image display
output_image = gr.Image(value=None, label="Image")
# testing video display
output_video = gr.Video(value=None, label="Video")
# export mesh display
output_mesh = gr.Model3D(value=None, label="3D Mesh")
run_event = run_btn.click(
fn=run,
inputs=[
model_selector,
config_editor,
prompt_input,
guidance_scale_input,
seed_input,
max_steps_input,
save_ckpt_checkbox,
save_root_state,
],
outputs=[
pid,
status,
logs,
output_image,
output_video,
output_mesh,
run_btn,
stop_btn,
],
concurrency_limit=1,
)
stop_btn.click(
fn=stop_run,
inputs=[pid],
outputs=[run_btn, stop_btn],
cancels=[run_event],
queue=False,
)
launch_args = {"server_port": port}
if listen:
launch_args["server_name"] = "0.0.0.0"
demo.queue().launch(**launch_args)
def watch(
pid: int,
trial_dir: str,
alive_timeout: int,
wait_timeout: int,
check_interval: int,
) -> None:
print(f"Spawn watcher for process {pid}")
def timeout_handler(signum, frame):
exit(1)
alive_path = os.path.join(trial_dir, "alive")
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(wait_timeout)
def loop_find_progress_file():
while True:
if not os.path.exists(alive_path):
time.sleep(check_interval)
else:
signal.alarm(0)
return
def loop_check_alive():
while True:
if not psutil.pid_exists(pid):
print(f"Process {pid} not exists, watcher exits.")
cleanup_and_exit()
try:
alive_timestamp = float(open(alive_path).read())
except Exception:
continue
if time.time() - alive_timestamp > alive_timeout:
print(f"Alive timeout for process {pid}, killed.")
try:
os.kill(pid, signal.SIGKILL)
except Exception:
print(f"Exception when killing process {pid}.")
cleanup_and_exit()
time.sleep(check_interval)
def cleanup_and_exit():
exit(0)
# loop until alive file is found, or alive_timeout is reached
loop_find_progress_file()
# kill the process if it is not accessed for alive_timeout seconds
loop_check_alive()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("operation", type=str, choices=["launch", "watch"])
args, extra = parser.parse_known_args()
if args.operation == "launch":
parser.add_argument("--listen", action="store_true")
parser.add_argument("--hf-space", action="store_true")
parser.add_argument("--self-deploy", action="store_true")
parser.add_argument("--save-ckpt", action="store_true") # unused
parser.add_argument("--save-root", type=str, default=".")
parser.add_argument("--port", type=int, default=7860)
args = parser.parse_args()
launch(
args.port,
listen=args.listen,
hf_space=args.hf_space,
self_deploy=args.self_deploy,
save_ckpt=args.save_ckpt,
save_root=args.save_root,
)
if args.operation == "watch":
parser.add_argument("--pid", type=int)
parser.add_argument("--trial-dir", type=str)
parser.add_argument("--alive-timeout", type=int, default=10)
parser.add_argument("--wait-timeout", type=int, default=10)
parser.add_argument("--check-interval", type=int, default=1)
args = parser.parse_args()
watch(
args.pid,
args.trial_dir,
alive_timeout=args.alive_timeout,
wait_timeout=args.wait_timeout,
check_interval=args.check_interval,
)