forked from tlux01/CS591-Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AVLDyCon.py
806 lines (637 loc) · 28.5 KB
/
AVLDyCon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
import networkx as nx
import random
import AVLTree as avl
import WAVLTree as wavl
import AdjacencyAVLTree as adt
# don't touch
LEFT = 0
RIGHT = 1
class EulerTourTree(wavl.WAVLTree):
def __init__(self, dc, node, level=-1, active=False):
# we an EulerTree Node initialize it with zero weight
super().__init__(0)
# reference to DynamicCon structure this EulerTree node belongs
self.dc = dc
# corresponding networkx node, this is a key, access node with G.nodes[node]
self.node = node
# level E_i which this node is stored on
self.level = level
# active denotes if this node is the active occurrence
self.active = active
# left and right edge of node in EulerTree, left edge is represented by
# (predecessor, node), right edge is (node, successor)
self.edge_occurrences = [None, None]
def __repr__(self):
#output_string = "|{}, w:{}, sw:{}, [{} {}]|".format(self.node, self.weight, self.sub_tree_weight, self.child[LEFT].node if self.child[LEFT] else None,self.child[RIGHT].node if self.child[RIGHT] else None)
#output_string = "ETT(dc:{},level:{},node:{})".format(self.dc.max_level, self.level, self.node)
output_string = "|{}, w:{}, s:{}|".format(self.node, self.weight, self.sub_tree_weight)
return output_string
# acts as a second constructor, creates a new EulerTourTree occurrence from
# an active occurrence
def create_new_occ(self):
# remember our constructor defaults active to false which is what we want
new_node = EulerTourTree(self.dc, self.node, self.level)
return new_node
def pass_activity(self, to):
"""pass activity from self to to"""
if (not self.active):
raise ValueError("tryna pass activity from an inactive node")
self.active = False;
to.active = True;
to.set_weight(self.weight)
self.weight = 0
self.dc.G.nodes[self.node]["data"].active_occ[self.level] = to
################# Static Methods for EulerTourTree ######################
# i is the level, changes root from old_root to new new_root
# make new root first in EulerTour
def change_root(old_root, new_root, i, dc):
# first node in inorder Traversal
first_node = old_root.first()
# if new_root is already the first node we are done
if new_root is first_node:
return old_root
# create new occurrence that will arise from changing root
new_occ = new_root.create_new_occ()
# we now last node in EulerTour is the old_root
last_node = old_root.last()
if first_node.active:
# make the last occurrence of root to be the active
first_node.pass_activity(last_node)
## NOTSURE: what if these edge occurrences are None
if (new_root.edge_occurrences[LEFT] == new_root.edge_occurrences[RIGHT]):
k = 0
# replace none pointer to this new occurrence
edge = new_root.edge_occurrences[LEFT]
while True:
if dc.G.edges[edge]["data"].tree_occ[i][k] is not None:
k += 1
else:
dc.G.edges[edge]["data"].tree_occ[i][k] = new_occ
break
else:
k = 0
# replace new_root with this new occurrence
edge = new_root.edge_occurrences[LEFT]
while True:
if dc.G.edges[edge]["data"].tree_occ[i][k] is not new_root:
k += 1
else:
dc.G.edges[edge]["data"].tree_occ[i][k] = new_occ
break
# edge is represented by tuple
first_edge = first_node.edge_occurrences[RIGHT]
if first_edge != last_node.edge_occurrences[LEFT] or new_root is last_node:
k = 0
# find pointer to first node
while True:
if dc.G.edges[first_edge]["data"].tree_occ[i][k] is not first_node:
k += 1
else:
dc.G.edges[first_edge]["data"].tree_occ[i][k] = last_node
break
else:
k = 0
# find poitner to first node
while True:
if dc.G.edges[first_edge]["data"].tree_occ[i][k] is not first_node:
k += 1
else:
dc.G.edges[first_edge]["data"].tree_occ[i][k] = None
break
# right edge of first node becomes right edge of last node
last_node.edge_occurrences[RIGHT] = first_edge
# left edge of new_root becomes left edge of new_occ
new_occ.edge_occurrences[LEFT] = new_root.edge_occurrences[LEFT]
# new root will have no left edge as it is root
new_root.edge_occurrences[LEFT] = None
# get rid of first_node
s1, s2 = avl.split(first_node, RIGHT, dc.et_dummy)
# when u see a deletion of a node, isolate
first_node.isolate()
s1, s2 = avl.split(new_root, LEFT, dc.et_dummy)
s3 = avl.join(s1, new_occ, dc.et_dummy)
et = avl.join(s2, s3, dc.et_dummy)
return et
def swap(a,b):
return b,a
def et_cut(e, i, dc):
"""delete edge e from self on level i, updating dc accordingly"""
# get the nodes representing edge e on level i
ea1 = dc.G.edges[e]["data"].tree_occ[i][0]
ea2 = dc.G.edges[e]["data"].tree_occ[i][1]
eb1 = dc.G.edges[e]["data"].tree_occ[i][2]
eb2 = dc.G.edges[e]["data"].tree_occ[i][3]
# set the tree_occ to None
dc.G.edges[e]["data"].tree_occ[i][0] = None
dc.G.edges[e]["data"].tree_occ[i][1] = None
dc.G.edges[e]["data"].tree_occ[i][2] = None
dc.G.edges[e]["data"].tree_occ[i][3] = None
# sort e1,e2,e3,e4 s.t. ea1 < eb1 < eb2 < ea2 in In-order
# e1 may be None
if ea1 and ea2:
if avl.smaller(ea2,ea1):
ea1, ea2 = swap(ea1, ea2)
else: # either e1 or e2 is None
if ea1:
ea2 = ea1
ea1 = None
if eb1 and eb2:
if avl.smaller(eb2,eb1):
eb1, eb2 = swap(eb1, eb2)
else: # either eb1 or eb2 is None
if eb1:
eb2 = eb1
eb1 = None
# now ea2 and eb2 are not None
if avl.smaller(ea2, eb2):
ea1, eb1 = swap(ea1, eb1)
ea2, eb2 = swap(ea2, eb2)
# update ET trees
s1, s2 =avl.split(ea1, RIGHT, dc.et_dummy)
s2, s3 =avl.split(ea2, RIGHT, dc.et_dummy)
avl.join(s1,s3,dc.et_dummy)
s1,s2 = avl.split(eb2, RIGHT, dc.et_dummy)
# update active occurrences
if ea2.active:
ea2.pass_activity(ea1)
# update tree_occurrences
after_e = ea2.edge_occurrences[RIGHT]
if after_e:
if ea1.edge_occurrences[LEFT] != after_e: # replace ea2 by ea1
k = 0
while True:
if dc.G.edges[after_e]["data"].tree_occ[i][k] is not ea2:
k += 1
else:
dc.G.edges[after_e]["data"].tree_occ[i][k] = ea1
break
else: # replace ea2 by None
k = 0
while True:
if dc.G.edges[after_e]["data"].tree_occ[i][k] is not ea2:
k += 1
else:
dc.G.edges[after_e]["data"].tree_occ[i][k] = None
break
# update edge_occurrences
ea1.edge_occurrences[RIGHT] = ea2.edge_occurrences[RIGHT]
if eb1:
eb1.edge_occurrences[LEFT] = None
else:
eb2.edge_occurrences[LEFT] = None
eb2.edge_occurrences[RIGHT] = None
ea2.isolate()
# contructs new euler tour from linking of nodes u and v,
# need to make sure that u and v are initially disconnected
# edge is of form (u, v)
def et_link(u, v, edge, i, dc):
# nodes u,v, i is the level, dc is the pointer to the DynamicCon object
# get active occurrence of the nodes
u_active = dc.G.nodes[u]["data"].active_occ[i]
v_active = dc.G.nodes[v]["data"].active_occ[i]
new_u_occ = u_active.create_new_occ()
# et tree containing v_active
et_v = v_active.find_root()
#reroot et_v at v_active
et_v = change_root(et_v, v_active, i, dc)
# initialize first 2 of 4 tree occurrences corresponding to this edge
dc.G.edges[edge]["data"].tree_occ[i][0] = u_active
dc.G.edges[edge]["data"].tree_occ[i][1] = new_u_occ
# get last in InOrder traversal of et_v, also since we rerooted (with respect
# to EulerTour, not the binary tree holding ET(v)) at v_active, we know that
# v_active = et_v = et_v.first()
et_v_last = et_v.last()
dc.G.edges[edge]["data"].tree_occ[i][3] = et_v_last
# if they are not the same occurrence of the same node
if et_v_last is not v_active:
dc.G.edges[edge]["data"].tree_occ[i][2] = v_active
else:
dc.G.edges[edge]["data"].tree_occ[i][2] = None
# update tree occurrences of our edge following our the edge after u
after_u_edge = u_active.edge_occurrences[RIGHT]
if after_u_edge:
if u_active.edge_occurrences[LEFT] != after_u_edge:
k = 0
# find pointer to u_active
while True:
if dc.G.edges[after_u_edge]["data"].tree_occ[i][k] is not u_active:
k += 1
else:
dc.G.edges[after_u_edge]["data"].tree_occ[i][k] = new_u_occ
break
else:
k = 0
# find pointer to u_active
while True:
if dc.G.edges[after_u_edge]["data"].tree_occ[i][k] is not None:
k += 1
else:
dc.G.edges[after_u_edge]["data"].tree_occ[i][k] = new_u_occ
break
# update edge_occurrences
new_u_occ.edge_occurrences[RIGHT] = u_active.edge_occurrences[RIGHT]
new_u_occ.edge_occurrences[LEFT] = edge
u_active.edge_occurrences[RIGHT] = edge
v_active.edge_occurrences[LEFT] = edge
et_v_last.edge_occurrences[RIGHT] = edge
et_v = avl.join(et_v, new_u_occ, dc.et_dummy)
s1, s2 = avl.split(u_active, RIGHT, dc.et_dummy)
s3 = avl.join(et_v, s2, dc.et_dummy)
et = avl.join(s1, s3, dc.et_dummy)
return et
######################################################################
class DynamicConNode():
def __init__(self):
# list of EulerTree
self.active_occ = None
# adjacency tree of non tree edges connected to this node
self.adjacent_edges = None
def __repr__(self):
return str(self.active_occ)
class DynamicConEdge:
def __init__(self):
self.level = None
# points to the two ed_nodes corresponding to this edge, are
# none if this is a tree edge, 0th index is source of edge, 1st
# index is target of edge
self.non_tree_occ = [None, None]
# points to array for each level the 4 node occurrences in EulerTree that
# represent this edge
# at each level the four occurrences are ordered in the manner below
# [occurrence of source of edge, occurrence of source of edge, occurrence of target of edge, occurrence of target of edge]
self.tree_occ = None
class DynamicCon:
def __init__(self, G, use_custom_max_level = False, custom_max_level = 0):
# G is a networkx graph
self.G = G
# number of levels
logn = 0
i = len(G.nodes())
while i > 0:
logn += 1
i //= 2
# constants for asymptotic bounds
self.small_weight = logn * logn
self.small_set = 16 * logn
self.sample_size = 32 * logn * logn
# this is l in the paper
if use_custom_max_level:
self.max_level = custom_max_level
else:
self.max_level = 6 * logn
# counters for number of edges added to each level
self.added_edges = [0 for _ in range(self.max_level + 1)]
# rebuild bound of last level, double it as we go up levels
max_level_bound = 4
self.rebuild_bound = [max_level_bound * (2**(self.max_level - i)) for _ in range(self.max_level + 1)]
# edge lists is a list of lists, where each list is the set of edges
# which we will represent as a tuple on a level
self.non_tree_edges = [[] for _ in range(self.max_level + 1)]
self.tree_edges = [[] for _ in range(self.max_level + 1)]
self.et_dummy = EulerTourTree(self, "Dummy")
self.ed_dummy = adt.AdjacencyAVLTree("Dummy")
g_nodes = self.G.nodes
for node in g_nodes:
g_nodes[node]["data"] = DynamicConNode()
g_nodes[node]["data"].active_occ = [None for _ in range(self.max_level + 1)]
g_nodes[node]["data"].adjacent_edges = [None for _ in range(self.max_level + 1)]
for level in range(self.max_level + 1):
# create euler tree data structure for each node, default it as active_occ
# as each node is its own EulerTree, thus only one node in the tour
g_nodes[node]["data"].active_occ[level] = EulerTourTree(self, node, level, True)
g_edges = self.G.edges
for edge in g_edges:
g_edges[edge]["data"] = DynamicConEdge()
# source is smaller node
if edge[0] < edge[1]:
source = edge[0]
target = edge[1]
else:
source = edge[1]
target = edge[0]
if not self.connected(source, target, 0):
self.insert_tree(edge, 0, True)
else:
self.insert_non_tree(edge, 0)
# returns true if edge is a tree edge in some F_i
def tree_edge(self, edge):
return self.G.edges[edge]["data"].tree_occ is not None
# returns level that edge is in (i in G_i)
def level(self, edge):
return self.G.edges[edge]["data"].level
# returns boolean of whether the two nodes are in the same tree and thus connected
def connected(self, u, v, i = None):
# if no level provided, assume max_level
if i is None:
i = self.max_level
g_nodes = self.G.nodes
# get active_occ
u_active_occ = g_nodes[u]["data"].active_occ[i]
v_active_occ = g_nodes[v]["data"].active_occ[i]
# if they have the same root
return(u_active_occ.find_root() is v_active_occ.find_root())
# Insert edge into F_i, the tree spanning Union G_j , j <= i, where i
# is the level
def insert_tree(self, edge, i, create_tree_occ = False):
# create_tree_occ is to flag signifying if we need to construct list
# tree_occ for the DynamicCon class
#print("edge:{} inserted into tree at level:{}".format(edge, i))
#endpoints
# source is smaller node
if edge[0] < edge[1]:
source = edge[0]
target = edge[1]
else:
source = edge[1]
target = edge[0]
# DynamicConEdge
self.G.edges[edge]["data"].level = i
# create some empty lists
if create_tree_occ:
# 4 node occurrences in EulerTree
self.G.edges[edge]["data"].tree_occ = [[None, None, None, None] for _ in range(self.max_level + 1)]
for j in range(i, self.max_level + 1):
et_link(source,target, edge, j, self)
# edge now has pointer to DynamicCon's tree edges at level i,
# and add edge to this list
# if not wavl.check_sub_tree_weights(self.G.nodes[source]["data"].active_occ[0].find_root()):
# print("wrong subtree weights")
self.tree_edges[i].append(edge)
def delete_tree(self, edge):
i = self.level(edge)
#print("edge:{} deleted from tree at level:{}".format(edge, i))
# in all levels higher (sparser cuts) remove from EulerTourTree F_j
for j in range(i, self.max_level + 1):
et_cut(edge, j, self)
#remove edge from out list
if edge in self.tree_edges[i]:
self.tree_edges[i].remove(edge)
else:
self.tree_edges[i].remove((edge[1], edge[0]))
def insert_non_tree(self, edge, i):
#set level of edge to i
#print("edge:{} inserted into non tree at level:{}".format(edge, i))
self.G.edges[edge]["data"].level = i
# source is smaller node
if edge[0] < edge[1]:
source = edge[0]
target = edge[1]
else:
source = edge[1]
target = edge[0]
#need to initialize if none
if self.G.nodes[source]["data"].adjacent_edges[i] is None:
self.G.nodes[source]["data"].adjacent_edges[i] = adt.adj_insert(self.G.nodes[source]["data"].adjacent_edges[i], edge, self.ed_dummy)
self.G.edges[edge]["data"].non_tree_occ[0] = self.G.nodes[source]["data"].adjacent_edges[i]
self.G.nodes[source]["data"].adjacent_edges[i] = self.G.nodes[source]["data"].adjacent_edges[i].find_root()
else:
self.G.edges[edge]["data"].non_tree_occ[0] = adt.adj_insert(self.G.nodes[source]["data"].adjacent_edges[i], edge, self.ed_dummy)
self.G.nodes[source]["data"].adjacent_edges[i] = self.G.edges[edge]["data"].non_tree_occ[0].find_root()
if self.G.nodes[target]["data"].adjacent_edges[i] is None:
self.G.nodes[target]["data"].adjacent_edges[i] = adt.adj_insert(self.G.nodes[target]["data"].adjacent_edges[i], edge, self.ed_dummy)
self.G.edges[edge]["data"].non_tree_occ[1] = self.G.nodes[target]["data"].adjacent_edges[i]
self.G.nodes[target]["data"].adjacent_edges[i] = self.G.nodes[target]["data"].adjacent_edges[i].find_root()
else:
self.G.edges[edge]["data"].non_tree_occ[1] = adt.adj_insert(self.G.nodes[target]["data"].adjacent_edges[i], edge, self.ed_dummy)
self.G.nodes[target]["data"].adjacent_edges[i] = self.G.edges[edge]["data"].non_tree_occ[1].find_root()
# append edge DynCon's non-tree edges on level i
self.non_tree_edges[i].append(edge)
# increase weight of active occurences of source and target nodes at level i
self.G.nodes[source]["data"].active_occ[i].add_weight(1)
self.G.nodes[target]["data"].active_occ[i].add_weight(1)
def delete_non_tree(self, edge):
i = self.level(edge)
# source is smaller node
if edge[0] < edge[1]:
source = edge[0]
target = edge[1]
else:
source = edge[1]
target = edge[0]
# remove edge from source and target adjacency trees
#print("edge:{} deleted at non tree at level:{}".format(edge, i))
self.G.nodes[source]["data"].adjacent_edges[i] = adt.adj_delete(self.G.nodes[source]["data"].adjacent_edges[i],
self.G.edges[edge]["data"].non_tree_occ[0],
self.ed_dummy)
self.G.edges[edge]["data"].non_tree_occ[0] = None
self.G.nodes[target]["data"].adjacent_edges[i] = adt.adj_delete(self.G.nodes[target]["data"].adjacent_edges[i],
self.G.edges[edge]["data"].non_tree_occ[1],
self.ed_dummy)
self.G.edges[edge]["data"].non_tree_occ[1] = None
if edge in self.non_tree_edges[i]:
self.non_tree_edges[i].remove(edge)
else:
self.non_tree_edges[i].remove((edge[1], edge[0]))
if self.G.nodes[source]["data"].active_occ[i]:
self.G.nodes[source]["data"].active_occ[i].add_weight(-1)
if self.G.nodes[target]["data"].active_occ[i]:
self.G.nodes[target]["data"].active_occ[i].add_weight(-1)
def sample_and_test(self, et_tree, i):
''' Randomly select a non_tree edge of G_i (level i) with at least one endpoint
in our EulerTourTree et_tree, then check if this edge has exactly one endpoint in
et_tree. Note that this is called after a deletion of an edge, meaing we have
a disconnected tree
'''
# weight represents number of adjacent non tree edges
# where we double count those with two endpoint in et_tree
tree_weight = et_tree.sub_tree_weight
rand_et_num = random.randint(1, tree_weight)
# EulerTourTree node corresponding to our random number
et_node, offset = wavl.locate(et_tree, rand_et_num)
# get node
u = et_node.node
# get the AdjacencyTree node corresponding to returned offset
adj_node, _ = wavl.locate(self.G.nodes[u]["data"].adjacent_edges[i], offset)
edge = adj_node.edge
v = edge[1] if (u == edge[0]) else edge[0]
if self.connected(u,v,i):
return None
else:
return edge
# adj is of type AdjacencyTree
def traverse_edges(self, adj_node, edge_list):
if adj_node:
edge = adj_node.edge
i = self.level(edge)
if edge[0] < edge[1]:
source = edge[0]
target = edge[1]
else:
source = edge[1]
target = edge[0]
# we want edges with only one edge in current spanning tree
if not self.connected(source, target, i):
edge_list.append(edge)
self.traverse_edges(adj_node.child[LEFT], edge_list)
self.traverse_edges(adj_node.child[RIGHT], edge_list)
# return edges with exactly one endpoint in et_tree rooted at et_node
# edge list is mutable list so no need to return updates will propegate
def get_cut_edges(self, et_node, level, edge_list):
if et_node and et_node.sub_tree_weight > 0:
u = et_node.node
# only look at active so we dont double count
if et_node.active:
self.traverse_edges(self.G.nodes[u]["data"].adjacent_edges[level], edge_list)
# traverse through all nodes in EulerTourTree
self.get_cut_edges(et_node.child[LEFT], level, edge_list)
self.get_cut_edges(et_node.child[RIGHT], level, edge_list)
# for j >= i, insert all edges of each F_j into F_(i-1), and all non tree
# edges of G_j into G_(i-1), this is used in a rebuild
def move_edges(self, i):
# starting from lowest level, which is max_level, and ending at i
for j in range(self.max_level, i - 1 ,-1):
while len(self.non_tree_edges[j]) > 0:
edge = self.non_tree_edges[j][0]
self.delete_non_tree(edge)
self.insert_non_tree(edge, i-1)
while len(self.tree_edges[j]) > 0:
edge = self.tree_edges[j][0]
if edge in self.tree_edges[j]:
self.tree_edges[j].remove(edge)
else:
self.tree_edges[j].remove((edge[1], edge[0]))
self.tree_edges[i-1].append(edge)
self.G.edges[edge]["data"].level = i - 1
# source is smaller node
if edge[0] < edge[1]:
source = edge[0]
target = edge[1]
else:
source = edge[1]
target = edge[0]
for k in range(i-1, j):
et_link(source, target, edge, k, self)
# does a rebuild at level i, if neeeded
def rebuild(self, i):
# rebuild at level 3 or higher only
if (i < 3):
return
total_added_edges = 0
for j in range(i, self.max_level + 1):
total_added_edges += self.added_edges[j]
# now check if total added edges is larger than our rebuild bound
if total_added_edges > self.rebuild_bound[i]:
# print("edges were moved")
self.move_edges(i)
for j in range(i, self.max_level + 1):
self.added_edges[j] = 0
# after deletion of tree edge, try to reconnect trees on level i containing
# node u and v, if not possible recurse on higher level
def replace(self, u, v, i):
# get EulerTourTree roots of u and v
t1 = self.G.nodes[u]["data"].active_occ[i].find_root()
t2 = self.G.nodes[v]["data"].active_occ[i].find_root()
# assign t1 to be the smaller tree
if t1.sub_tree_weight > t2.sub_tree_weight:
t1 = t2
sample_success = True
# if weight is large enough, sample at most sample_size
if t1.sub_tree_weight > self.small_weight:
replacement_found = False
sample_count = 0
while not replacement_found and sample_count < self.sample_size:
edge = self.sample_and_test(t1, i)
# if sample_and_test returns an edge and not None
if edge:
replacement_found = True
# sampling was successful
if edge:
self.delete_non_tree(edge)
self.insert_tree(edge, i, True)
else:
sample_success = False
# weight of t1 too small to sample
else:
sample_success = False
if not sample_success:
# find all cut edges
cut_edges = []
if t1.sub_tree_weight > 0:
self.get_cut_edges(t1, i, cut_edges)
if len(cut_edges) == 0:
# recurse on above level
if (i < self.max_level):
self.replace(u, v, i+1)
else:
pass
else:
# see if cut set is large enough
if len(cut_edges) >= (t1.sub_tree_weight/ self.small_set):
#doesn't matter which edge we take, so for simplicity take first
reconnect_edge = cut_edges[0]
# print("reconnect_edge:", reconnect_edge)
self.delete_non_tree(reconnect_edge)
self.insert_tree(reconnect_edge, i, True)
# too few edges crossing our cut
else:
reconnect_edge = cut_edges[0]
self.delete_non_tree(reconnect_edge)
if i < self.max_level:
# move edge to above level
self.insert_tree(reconnect_edge, i + 1, True)
self.added_edges[i+1] += 1
# remove edge we just inserted into tree above
cut_edges = cut_edges[1:]
for edge in cut_edges:
self.delete_non_tree(edge)
self.insert_non_tree(edge, i+1)
self.added_edges[i+1] += 1
self.rebuild(i+1)
else:
self.insert_tree(reconnect_edge, i, True)
# function user can call to delete an edge in our graph G
def del_edge(self, edge):
# don't wanna try to delete a non-existing edge
if edge not in self.G.edges:
return
# source is smaller node
if edge[0] < edge[1]:
source = edge[0]
target = edge[1]
else:
source = edge[1]
target = edge[0]
if not self.tree_edge(edge):
self.delete_non_tree(edge)
else:
i = self.level(edge)
self.delete_tree(edge)
# not sure if this is needed to fix references
for j in range(0, self.max_level + 1):
self.G.edges[edge]["data"].tree_occ[j] = None
self.G.edges[edge]["data"].tree_occ = None
self.replace(source, target, i)
# remove edge from graph
self.G.remove_edge(source, target)
# function user can call to insert an edge from u to v in our graph G
def ins(self, u, v):
edge = (u, v)
# don't wanna insert an edge twice
if edge in self.G.edges:
return edge
self.G.add_edge(u,v)
self.G.edges[edge]["data"] = DynamicConEdge()
if not self.connected(u,v, self.max_level):
self.insert_tree(edge, self.max_level, True)
self.added_edges[self.max_level] += 1
self.rebuild(self.max_level)
else:
# binary search through levels
curr_level = self.max_level // 2
lower = 0
upper = self.max_level
while curr_level != lower:
if self.connected(u,v, curr_level):
upper = curr_level
curr_level = (lower + curr_level)//2
else:
lower = curr_level
curr_level = (upper + curr_level) //2
# we have two possible cases that result from this search
# either connected(u,v,lower) is true or either connected(u,v,lower+1)
if not self.connected(u, v, lower):
lower += 1
self.insert_non_tree(edge, lower)
self.added_edges[lower] += 1
self.rebuild(lower)
return edge