-
Notifications
You must be signed in to change notification settings - Fork 0
/
papers.json
4387 lines (4387 loc) · 138 KB
/
papers.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"papers": [
{
"title": "Generative adversarial nets.",
"authors": [
"Ian J. Goodfellow",
"Jean Pouget-Abadie",
"Mehdi Mirza",
"Bing Xu",
"David Warde-Farley",
"Sherjil Ozair",
"Aaron Courville",
"Yoshua Bengio*"
],
"conference": "NeurIPS 2014",
"links": {
"pdf": "https://arxiv.org/abs/1406.2661",
"tutorial": "https://arxiv.org/abs/1701.00160"
}
},
{
"title": "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.",
"authors": [
"Alec Radford",
"Luke Metz",
"Soumith Chintala"
],
"conference": "ICLR 2016",
"links": {
"pdf": "https://arxiv.org/abs/1511.06434",
"cited": "11591"
},
"model": "DCGAN"
},
{
"title": "Progressive Growing of GANs for Improved Quality, Stability, and Variation.",
"authors": [
"Tero Karras",
"Timo Aila",
"Samuli Laine",
"Jaakko Lehtinen"
],
"conference": "ICLR 2018",
"links": {
"pdf": "https://arxiv.org/abs/1710.10196",
"cited": "5073"
},
"model": "PG-GAN"
},
{
"title": "A Style-Based Generator Architecture for Generative Adversarial Networks.",
"authors": [
"Tero Karras",
"Samuli Laine",
"Timo Aila"
],
"conference": "CVPR 2019",
"links": {
"pdf": "https://arxiv.org/abs/1812.04948",
"cited": "5514"
},
"model": "StyleGAN"
},
{
"title": "Large Scale GAN Training for High Fidelity Natural Image Synthesis.",
"authors": [
"Andrew Brock",
"Jeff Donahue",
"Karen Simonyan"
],
"conference": "ICLR 2019",
"links": {
"pdf": "https://arxiv.org/abs/1809.11096",
"cited": "3604"
},
"model": "BigGAN"
},
{
"title": "Analyzing and Improving the Image Quality of StyleGAN.",
"authors": [
"Tero Karras",
"Samuli Laine",
"Miika Aittala",
"Janne Hellsten",
"Jaakko Lehtinen",
"Timo Aila"
],
"conference": "CVPR 2020",
"links": {
"pdf": "https://arxiv.org/abs/1912.04958",
"cited": "2965"
},
"model": "StyleGAN2"
},
{
"title": "Taming Transformers for High-Resolution Image Synthesis",
"authors": [
"Patrick Esser",
"Robin Rombach",
"Björn Ommer"
],
"conference": "CVPR 2021",
"links": {
"pdf": "https://arxiv.org/abs/2012.09841",
"project": "https://compvis.github.io/taming-transformers/",
"cited": "694"
},
"model": "VQGAN"
},
{
"title": "TransGAN: Two Transformers Can Make One Strong GAN, and That Can Scale Up",
"authors": [
"Yifan Jiang",
"Shiyu Chang",
"Zhangyang Wang"
],
"conference": "CVPR 2021",
"links": {
"pdf": "https://arxiv.org/abs/2102.07074",
"pytorch": "https://github.com/asarigun/TransGAN",
"cited": "157"
},
"model": "TransGAN"
},
{
"title": "Alias-Free Generative Adversarial Networks.",
"authors": [
"Tero Karras",
"Miika Aittala",
"Samuli Laine",
"Erik Härkönen",
"Janne Hellsten",
"Jaakko Lehtinen",
"Timo Aila"
],
"conference": "NeurIPS 2021",
"links": {
"pdf": "https://arxiv.org/abs/2106.12423",
"project": "https://nvlabs.github.io/stylegan3/",
"cited": "568"
},
"model": "StyleGAN3"
},
{
"title": "StyleSwin: Transformer-based GAN for High-resolution Image Generation",
"authors": [
"Bowen Zhang",
"Shuyang Gu",
"Bo Zhang",
"Jianmin Bao",
"Dong Chen",
"Fang Wen",
"Yong Wang",
"Baining Guo"
],
"conference": "CVPR 2022",
"links": {
"pdf": "https://arxiv.org/abs/2112.10762",
"cited": "49"
},
"model": "StyleSwin"
},
{
"title": "Scaling StyleGAN to Large Diverse Datasets",
"authors": [
"Axel Sauer",
"Katja Schwarz",
"Andreas Geiger"
],
"conference": "SIGGRAPH 2022",
"links": {
"pdf": "https://arxiv.org/abs/2202.00273",
"cited": "118"
},
"model": "StyleGAN-XL"
},
{
"title": "A Large-Scale Study on Regularization and Normalization in GANs",
"authors": [
"Karol Kurach",
"Mario Lucic",
"Xiaohua Zhai",
"Marcin Michalski",
"Sylvain Gelly"
],
"conference": "ICML 2019",
"links": {
"pdf": "https://arxiv.org/abs/1807.04720",
"cited": "141"
}
},
{
"title": "Energy-based Generative Adversarial Networks",
"authors": [
"Junbo Zhao",
"Michael Mathieu",
"Yann LeCun"
],
"conference": "ICLR 2017",
"links": {
"pdf": "https://arxiv.org/abs/1609.03126",
"cited": "978"
},
"model": "EB-GAN"
},
{
"title": "Towards Principled Methods for Training Generative Adversarial Networks",
"authors": [
"Martin Arjovsky",
"Léon Bottou"
],
"conference": "ICLR 2017",
"links": {
"pdf": "https://arxiv.org/abs/1701.04862",
"cited": "1696"
}
},
{
"title": "Least Squares Generative Adversarial Networks",
"authors": [
"Xudong Mao",
"Qing Li",
"Haoran Xie",
"Raymond Y.K. Lau",
"Zhen Wang",
"Stephen Paul Smolley"
],
"conference": "ICCV 2017",
"links": {
"pdf": "https://arxiv.org/abs/1611.04076",
"cited": "3504"
},
"model": "LSGAN"
},
{
"title": "Wasserstein GAN",
"authors": [
"Martin Arjovsky",
"Soumith Chintala",
"Léon Bottou"
],
"conference": "ICML 2017",
"links": {
"pdf": "https://arxiv.org/abs/1701.07875",
"cited": "3159"
},
"model": "WGAN"
},
{
"title": "Geometric GAN",
"authors": [
"Jae Hyun Lim",
"Jong Chul Ye"
],
"conference": "Axiv 2017",
"links": {
"pdf": "https://arxiv.org/abs/1705.02894",
"cited": "252"
},
"model": "GGAN"
},
{
"title": "Conditional Image Synthesis With Auxiliary Classifier GANs",
"authors": [
"Augustus Odena",
"Christopher Olah",
"Jonathon Shlens"
],
"conference": "ICML 2017",
"links": {
"pdf": "https://arxiv.org/abs/1610.09585",
"cited": "2550"
},
"model": "AC-GAN"
},
{
"title": "cGANs with Projection Discriminator",
"authors": [
"Takeru Miyato",
"Masanori Koyama"
],
"conference": "ICLR 2018",
"links": {
"pdf": "https://arxiv.org/abs/1802.05637",
"cited": "636"
}
},
{
"title": "High-Fidelity Image Generation With Fewer Labels",
"authors": [
"Mario Lucic*",
"Michael Tschannen*",
"Marvin Ritter*",
"Xiaohua Zhai",
"Olivier Bachem",
"Sylvain Gelly"
],
"conference": "ICML 2019",
"links": {
"pdf": "https://arxiv.org/abs/1903.02271",
"project": "https://github.com/google/compare_gan",
"cited": "123"
},
"model": "S³-GAN"
},
{
"title": "Variational Inference with Normalizing Flows",
"authors": [
"Danilo Jimenez Rezende",
"Shakir Mohamed"
],
"conference": "ICML 2015",
"links": {
"pdf": "https://arxiv.org/abs/1505.05770",
"cited": "2623"
}
},
{
"title": "Improved Variational Inference with Inverse Autoregressive Flow",
"authors": [
"Diederik P. Kingma",
"Tim Salimans",
"Rafal Jozefowicz",
"Xi Chen",
"Ilya Sutskever",
"Max Welling"
],
"conference": "NeurIPS 2016",
"links": {
"pdf": "https://arxiv.org/abs/1606.04934",
"cited": "1449"
}
},
{
"title": "NVAE: A Deep Hierarchical Variational Autoencoder",
"authors": [
"Arash Vahdat",
"Jan Kautz"
],
"conference": "NeurIPS 2020",
"links": {
"pdf": "https://arxiv.org/abs/2007.03898",
"cited": "439"
}
},
{
"title": "Improved techniques for training score-based generative models.",
"authors": [
"Yang Song",
"Stefano Ermon"
],
"conference": "NeurIPS 2020",
"links": {
"pdf": "https://arxiv.org/abs/2006.09011",
"cited": "365"
}
},
{
"title": "Denoising Diffusion Probabilistic Models",
"authors": [
"Jonathan Ho",
"Ajay Jain",
"Pieter Abbeel"
],
"conference": "NeurIPS 2020",
"links": {
"pdf": "https://arxiv.org/abs/2006.11239",
"cited": "1852"
},
"model": "DDPM"
},
{
"title": "Score-based generative modeling through stochastic differential equations",
"authors": [
"Yang Song",
"Jascha Sohl-Dickstein",
"Diederik P Kingma",
"Abhishek Kumar",
"Stefano Ermon",
"Ben Poole"
],
"conference": "ICLR 2021",
"links": {
"pdf": "https://arxiv.org/abs/2011.13456",
"cited": "915"
}
},
{
"title": "Improved Denoising Diffusion Probabilistic Models",
"authors": [
"Alex Nichol",
"Prafulla Dhariwal"
],
"conference": "ICML 2021",
"links": {
"pdf": "https://arxiv.org/abs/2102.09672",
"cited": "631"
},
"model": "Improved-DDPM"
},
{
"title": "Variational Diffusion Models.",
"authors": [
"Diederik P. Kingma",
"Tim Salimans",
"Ben Poole",
"Jonathan Ho"
],
"conference": "NeurIPS 2021",
"links": {
"pdf": "https://arxiv.org/abs/2107.00630",
"cited": "244"
}
},
{
"title": "Diffusion Models Beat GANs on Image Synthesis",
"authors": [
"Prafulla Dhariwal",
"Alex Nichol"
],
"conference": "NeurIPS 2021",
"links": {
"pdf": "https://arxiv.org/abs/2105.05233",
"cited": "1094"
},
"model": "Guided-Diffusion"
},
{
"title": "Classifier-Free Diffusion Guidance.",
"authors": [
"Jonathan Ho",
"Tim Salimans"
],
"conference": "NeurIPS 2021",
"links": {
"pdf": "https://arxiv.org/abs/2207.12598",
"cited": "399"
}
},
{
"title": "SDEdit: Image Synthesis and Editing with Stochastic Differential Equations",
"authors": [
"Chenlin Meng",
"Yutong He",
"Yang Song",
"Jiaming Song",
"Jiajun Wu",
"Jun-Yan Zhu",
"Stefano Ermon"
],
"conference": "ICLR 2022",
"links": {
"pdf": "https://arxiv.org/abs/2108.01073",
"cited": "152"
}
},
{
"title": "DiffusionCLIP: Text-guided Image Manipulation Using Diffusion Models",
"authors": [
"Gwanghyun Kim",
"Taesung Kwon",
"Jong Chul Ye"
],
"conference": "CVPR 2022",
"links": {
"pdf": "https://arxiv.org/abs/2110.02711",
"cited": "101"
}
},
{
"title": "Blended Diffusion: Text-driven Editing of Natural Images",
"authors": [
"Omri Avrahami",
"Dani Lischinski",
"Ohad Fried"
],
"conference": "CVPR 2022",
"links": {
"pdf": "https://arxiv.org/abs/2111.14818",
"cited": "148"
}
},
{
"title": "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models",
"authors": [
"Alex Nichol",
"Prafulla Dhariwal",
"Aditya Ramesh",
"Pranav Shyam",
"Pamela Mishkin",
"Bob McGrew",
"Ilya Sutskever",
"Mark Chen"
],
"conference": "ICML 2022",
"links": {
"pdf": "https://arxiv.org/abs/2112.10741",
"cited": "615"
}
},
{
"title": "Palette: Image-to-Image diffusion models.",
"authors": [
"Chitwan Saharia",
"William Chan",
"Huiwen Chang",
"Chris A. Lee",
"Jonathan Ho",
"Tim Salimans",
"David J. Fleet",
"Mohammad Norouzi"
],
"conference": "SIGGRAPH 2022",
"links": {
"pdf": "https://arxiv.org/abs/2111.05826",
"cited": "274"
}
},
{
"title": "RePaint: Inpainting using Denoising Diffusion Probabilistic Models",
"authors": [
"Andreas Lugmayr",
"Martin Danelljan",
"Andres Romero",
"Fisher Yu",
"Radu Timofte",
"Luc Van Gool"
],
"conference": "CVPR 2022",
"links": {
"pdf": "https://arxiv.org/abs/2201.09865",
"cited": "194"
}
},
{
"title": "Deep Convolutional Inverse Graphics Network",
"authors": [
"Tejas D. Kulkarni",
"Will Whitney",
"Pushmeet Kohli",
"Joshua B. Tenenbaum"
],
"conference": "NeurIPS 2015",
"links": {
"pdf": "Deep Convolutional Inverse Graphics Network"
},
"model": "DC-IGN"
},
{
"title": "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets",
"authors": [
"Xi Chen",
"Yan Duan",
"Rein Houthooft",
"John Schulman",
"Ilya Sutskever",
"Pieter Abbeel"
],
"conference": "NeurIPS 2016",
"links": {
"pdf": "https://arxiv.org/abs/1606.03657",
"cited": "3573"
},
"model": "InfoGAN"
},
{
"title": "beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework",
"authors": [
"I. Higgins",
"L. Matthey",
"Arka Pal",
"Christopher P. Burgess",
"Xavier Glorot",
"M. Botvinick",
"S. Mohamed",
"Alexander Lerchner"
],
"conference": "ICLR 2017",
"links": {
"pdf": "https://openreview.net/forum?id=Sy2fzU9gl"
},
"model": "Beta-VAE"
},
{
"title": "Understanding disentangling in β-VAE",
"authors": [
"Christopher P. Burgess",
"Irina Higgins",
"Arka Pal",
"Loic Matthey",
"Nick Watters",
"Guillaume Desjardins",
"Alexander Lerchner"
],
"conference": "NeurIPS 2017",
"links": {
"pdf": "https://arxiv.org/abs/1804.03599",
"cited": "318"
},
"model": "AnnealedVAE"
},
{
"title": "Disentangling by Factorising",
"authors": [
"Hyunjik Kim",
"Andriy Mnih"
],
"conference": "NeurIPS 2017",
"links": {
"pdf": "https://arxiv.org/abs/1802.05983",
"cited": "986"
},
"model": "Factor-VAE"
},
{
"title": "A framework for the quantitative evaluation of disentangled representations.",
"authors": [
"Cian Eastwood",
"Christopher K. I. Williams"
],
"conference": "ICLR 2018",
"links": {
"pdf": "https://openreview.net/pdf?id=By-7dz-AZ"
},
"model": "DCI"
},
{
"title": "Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations.",
"authors": [
"Francesco Locatello",
"Stefan Bauer",
"Mario Lucic",
"Gunnar Rätsch",
"Sylvain Gelly",
"Bernhard Schölkopf",
"Olivier Bachem"
],
"conference": "ICML(best paper award) 2019",
"links": {
"pdf": "https://arxiv.org/abs/1811.12359",
"cited": "974"
}
},
{
"title": "Improved training of wasserstein gans",
"authors": [
"Ishaan Gulrajani",
"Faruk Ahmed",
"Martin Arjovsky",
"Vincent Dumoulin",
"Aaron Courville"
],
"conference": "NeurIPS 2017",
"links": {
"pdf": "https://arxiv.org/abs/1704.00028",
"cited": "7006"
},
"model": "WGAN-GP"
},
{
"title": "The Numerics of GANs",
"authors": [
"Lars Mescheder",
"Sebastian Nowozin",
"Andreas Geiger"
],
"conference": "NeurIPS 2017",
"links": {
"pdf": "https://arxiv.org/abs/1705.10461",
"cited": "390"
}
},
{
"title": "Which Training Methods for GANs do actually Converge?",
"authors": [
"Lars Mescheder",
"Andreas Geiger",
"Sebastian Nowozin"
],
"conference": "ICML 2018",
"links": {
"pdf": "https://arxiv.org/abs/1801.04406",
"cited": "1085"
},
"model": "R1-regularization"
},
{
"title": "Spectral Normalization for Generative Adversarial Networks.",
"authors": [
"Takeru Miyato",
"Toshiki Kataoka",
"Masanori Koyama",
"Yuichi Yoshida"
],
"conference": "ICLR 2018",
"links": {
"pdf": "https://arxiv.org/abs/1802.05957",
"cited": "3378"
},
"model": "SN-GAN"
},
{
"title": "Consistency regularization for generative adversarial networks.",
"authors": [
"Han Zhang",
"Zizhao Zhang",
"Augustus Odena",
"Honglak Lee"
],
"conference": "ICLR 2020",
"links": {
"pdf": "https://arxiv.org/abs/1910.12027",
"cited": "192"
},
"model": "CR-GAN"
},
{
"title": "Differentiable Augmentation for Data-Efficient GAN Training",
"authors": [
"Zhao Shengyu",
"Liu Zhijian",
"Lin Ji",
"Zhu Jun-Yan",
"Han Song"
],
"conference": "NeurIPS 2020",
"links": {
"pdf": "https://arxiv.org/abs/2006.10738",
"project": "https://hanlab.mit.edu/projects/data-efficient-gans/"
},
"cited": "316"
},
{
"title": "Improved consistency regularization for GANs",
"authors": [
"Zhengli Zhao",
"Sameer Singh",
"Honglak Lee",
"Zizhao Zhang",
"Augustus Odena",
"Han Zhang"
],
"conference": "AAAI 2021",
"links": {
"pdf": "https://arxiv.org/abs/2002.04724"
},
"cited": "86"
},
{
"title": "Training Generative Adversarial Networks with Limited Data",
"authors": [
"Tero Karras",
"Miika Aittala",
"Janne Hellsten",
"Samuli Laine",
"Jaakko Lehtinen",
"Timo Aila"
],
"conference": "NeurIPS 2020",
"links": {
"pdf": "https://arxiv.org/abs/2006.06676",
"tensorflow": "https://github.com/NVlabs/stylegan2-ada",
"pytorch": "https://github.com/NVlabs/stylegan2-ada-pytorch"
},
"cited": "921"
},
{
"title": "Gradient Normalization for Generative Adversarial Networks",
"authors": [
"Yi-Lun Wu",
"Hong-Han Shuai",
"Zhi-Rui Tam",
"Hong-Yu Chiu"
],
"conference": "ICCV 2021",
"links": {
"pdf": "https://arxiv.org/abs/2109.02235"
},
"cited": "23"
},
{
"title": "Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data",
"authors": [
"Liming Jiang",
"Bo Dai",
"Wayne Wu",
"Chen Change Loy"
],
"conference": "NeurIPS 2021",
"links": {
"pdf": "https://arxiv.org/abs/2111.06849"
},
"cited": "35"
},
{
"title": "Improved Techniques for Training GANs",
"authors": [
"Tim Salimans",
"Ian Goodfellow",
"Wojciech Zaremba",
"Vicki Cheung",
"Alec Radford",
"Xi Chen"
],
"conference": "NeurIPS 2016",
"links": {
"pdf": "https://arxiv.org/abs/1606.03498"
},
"metric": "Inception-Score/IS",
"cited": "6678"
},
{
"title": "GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium",
"authors": [
"Martin Heusel",
"Hubert Ramsauer",
"Thomas Unterthiner",
"Bernhard Nessler",
"Sepp Hochreiter"
],
"conference": "NeurIPS 2017",
"links": {
"pdf": "https://arxiv.org/abs/1706.08500"
},
"metric": "FID, TTUR",
"cited": "6472"
},
{
"title": "Sliced Wasserstein Generative Models",
"authors": [
"Jiqing Wu",
"Zhiwu Huang",
"Dinesh Acharya",
"Wen Li",
"Janine Thoma",
"Danda Pani Paudel",
"Luc Van Gool"
],
"conference": "CVPR 2019",
"links": {
"pdf": "https://arxiv.org/abs/1706.02631"
},
"metric": "SWD",
"cited": "0"
},
{
"title": "Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis",
"authors": [
"Bingchen Liu",
"Yizhe Zhu",
"Kunpeng Song",
"Ahmed Elgammal"
],
"conference": "ICLR 2021",
"links": {
"pdf": "https://arxiv.org/abs/2101.04775"
},
"fast_convergence": "FastGAN",
"cited": "109"
},
{
"title": "Projected GANs Converge Faster",
"authors": [
"Axel Sauer",
"Kashyap Chitta",
"Jens Müller",
"Andreas Geiger"
],
"links": {
"pdf": "https://arxiv.org/abs/2111.01007",
"project": "https://sites.google.com/view/projected-gan/",
"pytorch": "https://github.com/autonomousvision/projected_gan"
},
"cited": "72",
"fast_convergence": "ProjectedGAN"
},
{
"title": "Transferring GANs: generating images from limited data",
"authors": [
"Yaxing Wang",
"Chenshen Wu",
"Luis Herranz",
"Joost van de Weijer",
"Abel Gonzalez-Garcia",
"Bogdan Raducanu"
],
"conference": "ECCV 2018",
"links": {
"pdf": "https://www.ecva.net/papers/eccv_2018/papers_ECCV/papers/Wang_Transferring_GANs_Generating_Images_from_Limited_Data_ECCV_2018_paper.pdf"
},
"cited": "185"
},
{
"title": "Image Generation From Small Datasets via Batch Statistics Adaptation",
"authors": [
"Atsuhiro Noguchi",
"Tatsuya Harada"
],
"conference": "ICCV 2019",
"links": {
"pdf": "https://openaccess.thecvf.com/content_ICCV_2019/papers/Noguchi_Image_Generation_From_Small_Datasets_via_Batch_Statistics_Adaptation_ICCV_2019_paper.pdf"
},
"cited": "129"
},
{
"title": "Freeze Discriminator: A Simple Baseline for Fine-tuning GANs",
"authors": [
"Sangwoo Mo",
"Minsu Cho",
"Jinwoo Shin"
],
"conference": "CVPRW 2020",
"links": {
"pdf": "https://openaccess.thecvf.com/content_CVPRW_2020/papers/w52/Mo_Freeze_Discriminator_A_Simple_Baseline_for_Fine-tuning_GANs_CVPRW_2020_paper.pdf",
"pytorch": "https://github.com/POSTECH-CVLab/FreezeD"
},
"cited": "124"
},
{
"title": "Resolution dependant GAN interpolation for controllable image synthesis between domains",
"authors": [
"Justin N. M. Pinkney",
"Doron Adler"
],
"conference": "NeurIPS workshop 2020",
"links": {
"pdf": "https://arxiv.org/pdf/2012.02921.pdf"
},
"cited": "74"
},
{
"title": "Few-shot image generation with elastic weight consolidation",
"authors": [
"Yijun Li",
"Richard Zhang",
"Jingwan Lu",
"Eli Shechtman"
],
"conference": "NeurIPS 2020",
"links": {
"pdf": "https://proceedings.neurips.cc/paper/2020/file/3c7d5c3a5ddc6b48f5afad4b9f7e61e7-Paper.pdf"
},
"cited": "85"
},
{
"title": "Minegan: effective knowledge transfer from gans to target domains with few images",
"authors": [
"Yaxing Wang",
"Abel Gonzalez-Garcia",
"David Berga",
"Luis Herranz",
"Fahad Shahbaz Khan",
"Joost van de Weijer"
],
"conference": "CVPR 2020",
"links": {
"pdf": "https://openaccess.thecvf.com/content_CVPR_2020/papers/Wang_MineGAN_Effective_Knowledge_Transfer_From_GANs_to_Target_Domains_With_CVPR_2020_paper.pdf"
},
"cited": "117"
},
{
"title": "One-Shot Domain Adaptation For Face Generation",
"authors": [
"Chao Yang",
"Ser-Nam Lim"
],
"conference": "CVPR 2020",
"links": {
"pdf": "https://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_One-Shot_Domain_Adaptation_for_Face_Generation_CVPR_2020_paper.pdf"
},
"cited": "20"
},
{
"title": "Unsupervised image-to-image translation via pre-trained StyleGAN2 network",
"authors": [
"Jialu Huang",
"Jing Liao",
"Sam Kwong"
],
"conference": "TMM 2021",
"links": {
"pdf": "https://ieeexplore.ieee.org/document/9402307"
},
"cited": "30"
},
{
"title": "Few-shot Adaptation of Generative Adversarial Networks",
"authors": [
"Esther Robb",
"Wen-Sheng Chu",
"Abhishek Kumar",
"Jia-Bin Huang"
],
"conference": "arxiv 2020",
"links": {
"pdf": "https://arxiv.org/pdf/2006.06668.pdf"
},
"cited": "48"
},
{