-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
537 lines (443 loc) · 23.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
import os
import argparse
import datetime
import json
import random
import time
import numpy as np
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn.functional as F
from sklearn.metrics import confusion_matrix, classification_report
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import accuracy, AverageMeter
from config import get_config
from data import build_loader
from logger import create_logger
from lr_scheduler import build_scheduler
from models import build_model
from optimizer import build_optimizer
from utils import load_checkpoint, load_pretrained, save_checkpoint, NativeScalerWithGradNormCount, auto_resume_helper, \
reduce_tensor
# pytorch major version (1.x or 2.x)
PYTORCH_MAJOR_VERSION = int(torch.__version__.split('.')[0])
def parse_option():
parser = argparse.ArgumentParser('Swin Transformer training and evaluation script', add_help=False)
parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
# easy config modification
parser.add_argument('--batch-size', type=int, help="batch size for single GPU")
parser.add_argument('--data-path', type=str, help='path to dataset')
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece')
parser.add_argument('--pretrained',
help='pretrained weight from checkpoint, could be imagenet22k pretrained weight')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--disable_amp', action='store_true', help='Disable pytorch amp')
parser.add_argument('--amp-opt-level', type=str, choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used (deprecated!)')
parser.add_argument('--output', default='output', type=str, metavar='PATH',
help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
# distributed training
# for pytorch >= 2.0, use `os.environ['LOCAL_RANK']` instead
# (see https://pytorch.org/docs/stable/distributed.html#launch-utility)
if PYTORCH_MAJOR_VERSION == 1:
parser.add_argument("--local_rank", type=int, required=True, help='local rank for DistributedDataParallel')
# for acceleration
parser.add_argument('--fused_window_process', action='store_true',
help='Fused window shift & window partition, similar for reversed part.')
parser.add_argument('--fused_layernorm', action='store_true', help='Use fused layernorm.')
## overwrite optimizer in config (*.yaml) if specified, e.g., fused_adam/fused_lamb
parser.add_argument('--optim', type=str,
help='overwrite optimizer if provided, can be adamw/sgd/fused_adam/fused_lamb.')
args, unparsed = parser.parse_known_args()
config = get_config(args)
return args, config
def main(config):
dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn = build_loader(config)
logger.info(f"Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}")
model = build_model(config)
logger.info(str(model))
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"number of params: {n_parameters}")
if hasattr(model, 'flops'):
flops = model.flops()
logger.info(f"number of GFLOPs: {flops / 1e9}")
model.cuda()
model_without_ddp = model
optimizer = build_optimizer(config, model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False)
loss_scaler = NativeScalerWithGradNormCount()
if config.TRAIN.ACCUMULATION_STEPS > 1:
lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train) // config.TRAIN.ACCUMULATION_STEPS)
else:
lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train))
if config.AUG.MIXUP > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif config.MODEL.LABEL_SMOOTHING > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=config.MODEL.LABEL_SMOOTHING)
else:
criterion = torch.nn.CrossEntropyLoss()
max_accuracy = 0.0
if config.TRAIN.AUTO_RESUME:
resume_file = auto_resume_helper(config.OUTPUT)
if resume_file:
if config.MODEL.RESUME:
logger.warning(f"auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}")
config.defrost()
config.MODEL.RESUME = resume_file
config.freeze()
logger.info(f'auto resuming from {resume_file}')
else:
logger.info(f'no checkpoint found in {config.OUTPUT}, ignoring auto resume')
if config.MODEL.RESUME:
max_accuracy = load_checkpoint(config, model_without_ddp, optimizer, lr_scheduler, loss_scaler, logger)
if not config.EVAL_MODE:
acc1, loss, recalls = validate(config, data_loader_val, model)
logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%")
# return
else:
inference(config, data_loader_val, model)
return
if config.MODEL.PRETRAINED and (not config.MODEL.RESUME):
load_pretrained(config, model_without_ddp, logger)
acc1, loss, recalls = validate(config, data_loader_val, model)
logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%")
if config.THROUGHPUT_MODE:
throughput(data_loader_val, model, logger)
return
logger.info("Start training")
start_time = time.time()
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
data_loader_train.sampler.set_epoch(epoch)
train_one_epoch(config, model, criterion, data_loader_train, optimizer, epoch, mixup_fn, lr_scheduler,
loss_scaler)
if dist.get_rank() == 0 and (epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1) or
epoch >= config.TRAIN.EPOCHS - 10):
save_checkpoint(config, epoch, model_without_ddp, max_accuracy, optimizer, lr_scheduler, loss_scaler,
logger, tag=None)
acc1, loss, recalls = validate(config, data_loader_val, model)
metrecs = 0.5 * acc1 + (recalls[0] * 0.5 + recalls[1] * 0.5) * 0.5
logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {metrecs:.1f}%")
if metrecs > max_accuracy:
save_checkpoint(config, epoch, model_without_ddp, metrecs, optimizer, lr_scheduler, loss_scaler,
logger, tag="best")
max_accuracy = max(max_accuracy, metrecs)
logger.info(f'Max accuracy/recall: {max_accuracy:.2f}%')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
def train_one_epoch(config, model, criterion, data_loader, optimizer, epoch, mixup_fn, lr_scheduler, loss_scaler):
model.train()
optimizer.zero_grad()
num_steps = len(data_loader)
batch_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = AverageMeter()
scaler_meter = AverageMeter()
losses_meter = [AverageMeter() for _ in range(len(config.MODEL.LOSS_WEIGHT))]
start = time.time()
end = time.time()
for idx, (samples, targets, _) in enumerate(data_loader):
samples = [sample.cuda(non_blocking=True) for sample in samples]
targets = targets.cuda(non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
outputs = model(samples)
if isinstance(outputs, list):
losses = [criterion(output, targets) for output in outputs]
if config.MODEL.LOSS_WEIGHT is not None and config.MODEL.DEEP_SUPERVISION:
losses = [losses[i] + losses[i + 1] for i in range(0, 8, 2)] + [losses[8]]
losses_weight = config.MODEL.LOSS_WEIGHT
loss = sum([l*w for l, w in zip(losses, losses_weight)])
else:
loss = sum(losses)
else:
loss = criterion(outputs, targets)
loss = loss / config.TRAIN.ACCUMULATION_STEPS
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
grad_norm = loss_scaler(loss, optimizer, clip_grad=config.TRAIN.CLIP_GRAD,
parameters=model.parameters(), create_graph=is_second_order,
update_grad=(idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0)
if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
optimizer.zero_grad()
lr_scheduler.step_update((epoch * num_steps + idx) // config.TRAIN.ACCUMULATION_STEPS)
loss_scale_value = loss_scaler.state_dict()["scale"]
torch.cuda.synchronize()
loss_meter.update(loss.item(), targets.size(0))
if losses:
for i in range(len(losses_meter)):
losses_meter[i].update(losses[i].item() / config.TRAIN.ACCUMULATION_STEPS, targets.size(0))
if grad_norm is not None: # loss_scaler return None if not update
norm_meter.update(grad_norm)
scaler_meter.update(loss_scale_value)
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[0]['lr']
wd = optimizer.param_groups[0]['weight_decay']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
logger.info(
f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t wd {wd:.4f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
# f'loss_0 {losses_meter[0].val:.4f} ({losses_meter[0].avg:.4f})\t'
# f'loss_1 {losses_meter[1].val:.4f} ({losses_meter[1].avg:.4f})\t'
# f'loss_2 {losses_meter[2].val:.4f} ({losses_meter[2].avg:.4f})\t'
# f'loss_3 {losses_meter[3].val:.4f} ({losses_meter[3].avg:.4f})\t'
# f'loss_weghts {losses_weight}\t'
f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
f'loss_scale {scaler_meter.val:.4f} ({scaler_meter.avg:.4f})\t'
f'mem {memory_used:.0f}MB')
epoch_time = time.time() - start
logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}")
@torch.no_grad()
def validate(config, data_loader, model):
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
losses_meter = [AverageMeter() for _ in range(len(config.MODEL.LOSS_WEIGHT))]
# Initialize AverageMeter instances for class-specific recall
recall1_meter = AverageMeter() # Recall for class 1
recall2_meter = AverageMeter() # Recall for class 2
end = time.time()
for idx, (images, targets, _) in enumerate(data_loader):
images = [image.cuda(non_blocking=True) for image in images]
targets = targets.cuda(non_blocking=True)
# compute output
with torch.cuda.amp.autocast(enabled=config.AMP_ENABLE):
outputs = model(images)
if isinstance(outputs, list):
losses = [criterion(output, targets) for output in outputs]
if config.MODEL.LOSS_WEIGHT is not None and config.MODEL.DEEP_SUPERVISION:
losses = [losses[i] + losses[i + 1] for i in range(0, 8, 2)] + [losses[8]]
loss = sum([l * w for l, w in zip(losses, config.MODEL.LOSS_WEIGHT)])
else:
loss = sum(losses)
outputs = outputs[-1]
else:
loss = criterion(outputs, targets)
# measure accuracy and record loss
acc1 = accuracy(outputs, targets, topk=(1, ))[0]
acc1 = reduce_tensor(acc1)
loss = reduce_tensor(loss)
if losses:
losses_ = [reduce_tensor(t) for t in losses]
loss_meter.update(loss.item(), targets.size(0))
acc1_meter.update(acc1.item(), targets.size(0))
if losses:
for i in range(len(losses_meter)):
losses_meter[i].update(losses_[i].item(), targets.size(0))
# Get predicted labels
_, preds = torch.max(outputs, dim=1)
# Calculate recall for class 1 and class 2 locally
relevant_1 = (targets == 1).sum().float()
true_positives_1 = ((preds == 1) & (targets == 1)).sum().float()
relevant_2 = (targets == 2).sum().float()
true_positives_2 = ((preds == 2) & (targets == 2)).sum().float()
# Use all_reduce to aggregate across all GPUs
relevant_1 = reduce_tensor(relevant_1)
relevant_2 = reduce_tensor(relevant_2)
true_positives_1 = reduce_tensor(true_positives_1)
true_positives_2 = reduce_tensor(true_positives_2)
# Calculate recall only after the reduction
if relevant_1 > 0: # Avoid division by zero
recall1 = true_positives_1 / relevant_1 * 100.0
recall1_meter.update(recall1.item(), relevant_1.item())
if relevant_2 > 0: # Avoid division by zero
recall2 = true_positives_2 / relevant_2 * 100.0
recall2_meter.update(recall2.item(), relevant_2.item())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
# f'loss_0 {losses_meter[0].val:.4f} ({losses_meter[0].avg:.4f})\t'
# f'loss_1 {losses_meter[1].val:.4f} ({losses_meter[1].avg:.4f})\t'
# f'loss_2 {losses_meter[2].val:.4f} ({losses_meter[2].avg:.4f})\t'
# f'loss_3 {losses_meter[3].val:.4f} ({losses_meter[3].avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Recall@1 {recall1_meter.val:.3f} ({recall1_meter.avg:.3f})\t'
f'Recall@2 {recall2_meter.val:.3f} ({recall2_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
logger.info(f' * Acc@1 {acc1_meter.avg:.3f}')
logger.info(f' * Recall@1 {recall1_meter.avg:.3f}')
logger.info(f' * Recall@2 {recall2_meter.avg:.3f}')
return acc1_meter.avg, loss_meter.avg, [recall1_meter.avg, recall2_meter.avg]
@torch.no_grad()
def inference(config, data_loader, model):
model.eval()
batch_time = AverageMeter()
acc1_meter = AverageMeter()
all_targets = []
all_predictions = []
all_scores = []
all_names = []
end = time.time()
for idx, (images, target, name) in enumerate(data_loader):
images = [image.cuda(non_blocking=True) for image in images]
target = target.cuda(non_blocking=True)
all_names.extend(name)
# compute output
with torch.cuda.amp.autocast(enabled=config.AMP_ENABLE):
output = model(images)
if isinstance(output, list):
output = output[-1]
# Apply softmax to get probabilities for each class
output_probs = F.softmax(output, dim=1)
# Store the scores (probabilities)
all_scores.extend(output_probs.cpu().numpy())
# measure accuracy and record loss
acc1 = accuracy(output, target, topk=(1, ))[0]
acc1 = reduce_tensor(acc1)
acc1_meter.update(acc1.item(), target.size(0))
_, preds = torch.max(output, 1)
all_targets.extend(target.cpu().numpy())
all_predictions.extend(preds.cpu().numpy())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
# Gather all targets, predictions, and scores from all GPUs
all_targets_gathered = [None for _ in range(dist.get_world_size())]
all_predictions_gathered = [None for _ in range(dist.get_world_size())]
all_scores_gathered = [None for _ in range(dist.get_world_size())]
all_names_gathered = [None for _ in range(dist.get_world_size())]
# Use dist.all_gather to gather data from all processes
dist.all_gather_object(all_targets_gathered, all_targets)
dist.all_gather_object(all_predictions_gathered, all_predictions)
dist.all_gather_object(all_scores_gathered, all_scores)
dist.all_gather_object(all_names_gathered, all_names)
# Flatten the lists from all GPUs into one
all_targets = [item for sublist in all_targets_gathered for item in sublist]
all_predictions = [item for sublist in all_predictions_gathered for item in sublist]
all_scores = [item for sublist in all_scores_gathered for item in sublist]
all_names = [item for sublist in all_names_gathered for item in sublist]
classes = {
0: 'normal',
1: 'benign',
2: 'tumor'
}
preds_save = [classes[x] for x in all_predictions]
targets_save = [classes[x] for x in all_targets]
results = pd.DataFrame({'names': all_names, 'preds': preds_save, 'targets': targets_save})
for i in range(3):
results[f'class_{i}_score'] = [output_scores[i] for output_scores in all_scores]
results.to_csv(os.path.join(config.OUTPUT, "results.csv"), index=False, header=True)
target_names = ['Normal', 'Benign', 'Tumor']
# Compute confusion matrix
cm = confusion_matrix(all_targets, all_predictions, labels=[0, 1, 2])
report = classification_report(all_targets, all_predictions, target_names=target_names, digits=4)
# Compute metrics
recall = cm.diagonal() / cm.sum(axis=1) # Recall for each class
precision = cm.diagonal() / cm.sum(axis=0) # Precision for each class
specificity = []
for i in range(len(cm)):
true_negatives = cm.sum() - (cm[i, :].sum() + cm[:, i].sum() - cm[i, i])
specificity.append((true_negatives / (true_negatives + cm[:, i].sum() - cm[i, i])).item())
logger.info(f' * Acc@1 {acc1_meter.avg:.2f}')
logger.info(f' * Recall: Normal {recall[0]*100:.2f}, Benign {recall[1]*100:.2f}, Tumor {recall[2]*100:.2f}')
logger.info(f' * Precision: Normal {precision[0]*100:.2f}, Benign {precision[1]*100:.2f}, Tumor {precision[2]*100:.2f}')
logger.info(f' * Specificity: Normal {specificity[0]*100:.2f}, Benign {specificity[1]*100:.2f}, Tumor {specificity[2]*100:.2f}')
logger.info(f'\nClassification Report:\n{report}')
@torch.no_grad()
def throughput(data_loader, model, logger):
model.eval()
for idx, (images, _) in enumerate(data_loader):
images = [image.cuda(non_blocking=True) for image in images]
batch_size = images[0].shape[0]
for i in range(50):
model(images)
torch.cuda.synchronize()
logger.info(f"throughput averaged with 30 times")
tic1 = time.time()
for i in range(30):
model(images)
torch.cuda.synchronize()
tic2 = time.time()
logger.info(f"batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}")
return
if __name__ == '__main__':
args, config = parse_option()
if config.AMP_OPT_LEVEL:
print("[warning] Apex amp has been deprecated, please use pytorch amp instead!")
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
else:
rank = -1
world_size = -1
torch.cuda.set_device(config.LOCAL_RANK)
torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
torch.distributed.barrier()
seed = config.SEED + dist.get_rank()
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
# linear scale the learning rate according to total batch size, may not be optimal
linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
# gradient accumulation also need to scale the learning rate
if config.TRAIN.ACCUMULATION_STEPS > 1:
linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS
config.defrost()
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
config.TRAIN.MIN_LR = linear_scaled_min_lr
config.freeze()
os.makedirs(config.OUTPUT, exist_ok=True)
logger = create_logger(output_dir=config.OUTPUT, dist_rank=dist.get_rank(), name=f"{config.MODEL.NAME}")
if dist.get_rank() == 0:
path = os.path.join(config.OUTPUT, "config.json")
with open(path, "w") as f:
f.write(config.dump())
logger.info(f"Full config saved to {path}")
# print config
logger.info(config.dump())
logger.info(json.dumps(vars(args)))
main(config)