-
Notifications
You must be signed in to change notification settings - Fork 26
/
losses.py
153 lines (118 loc) · 4.99 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from torchvision import models
from kornia.losses import ssim_loss
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import piq
from functools import partial
from math import exp
class MSELoss(nn.Module):
def __init__(self):
super(MSELoss, self).__init__()
self.loss = nn.MSELoss(reduction='mean')
def forward(self, inputs, targets):
loss = self.loss(inputs['rgb_coarse'], targets)
if 'rgb_fine' in inputs:
loss += self.loss(inputs['rgb_fine'], targets)
return {'tot': loss, 'l2': loss}
def gaussian(window_size, sigma):
gauss = torch.Tensor(
[exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(
_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = torch.Tensor(_2D_window.expand(
channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size//2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size//2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(
img1*img1, window, padding=window_size//2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(
img2*img2, window, padding=window_size//2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding=window_size //
2, groups=channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2)) / \
((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
class SSIM(torch.nn.Module):
def __init__(self, window_size=11, size_average=True):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
# print(img1.shape, img2.shape)
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
class L2_SSIM_Loss(nn.Module):
def __init__(self):
super(L2_SSIM_Loss, self).__init__()
self.loss = nn.MSELoss(reduction='mean')
# self.ssim = ssim_loss
def forward(self, inputs, targets):
loss = self.loss(inputs['rgb_coarse'], targets)
# ssim = 1 - self.ssim(inputs['rgb_coarse'], targets)
if 'rgb_fine' in inputs:
loss += self.loss(inputs['rgb_fine'], targets)
ssim = ssim_loss(inputs['rgb_fine'], targets, window_size=11)
# ssim = 1 - self.ssim(inputs['rgb_fine'], targets)
# ratio from MonoDepth
return {'tot': loss + ssim * 2.8333, 'l2': loss, 'ssim': ssim}
class VGG16LossDirect(nn.Module):
def __init__(self):
super().__init__()
vgg16 = models.vgg16(pretrained=True)
self.vgg = nn.Sequential(
*list(vgg16.children())[0][:23]) # .to(self.device)
for params in self.vgg.parameters():
params.requires_grad = False
self.l1 = nn.L1Loss()
def forward(self, out, data):
# print(out.shape, data.shape)
mean = torch.tensor([0.485, 0.456, 0.406],
device=out.device).reshape(1, 3, 1, 1)
std = torch.tensor([0.229, 0.224, 0.225],
device=out.device).reshape(1, 3, 1, 1)
out = F.interpolate(out, size=(224, 224))
out = (out - mean) / std
data = F.interpolate(data, size=(224, 224))
data = (data - mean) / std
return self.l1(self.vgg(out), self.vgg(data))
class L2_vgg_Loss(nn.Module):
def __init__(self):
super(L2_vgg_Loss, self).__init__()
self.loss = nn.MSELoss(reduction='mean')
self.vgg = VGG16LossDirect()
def forward(self, inputs, targets):
# print(inputs['rgb_coarse'].shape, targets.shape)
loss = self.loss(inputs['rgb_coarse'], targets)
# vgg = self.vgg(inputs['rgb_coarse'], targets)
if 'rgb_fine' in inputs:
loss += self.loss(inputs['rgb_fine'], targets)
vgg = self.vgg(inputs['rgb_fine'], targets)
return {'tot': loss + vgg * 0.01, 'l2': loss, 'vgg': vgg}
loss_dict = {'mse': MSELoss,
'l2_ssim': L2_SSIM_Loss, 'l2_vgg': L2_vgg_Loss}