-
Notifications
You must be signed in to change notification settings - Fork 10
/
train.py
492 lines (461 loc) · 26.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import numpy as np
import random
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim, l2_loss, lpips_loss
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams, ModelHiddenParams
from torch.utils.data import DataLoader
from utils.timer import Timer
import lpips
import gc
from torchvision import transforms as T
from utils.scene_utils import render_training_image
from time import time
to8b = lambda x : (255*np.clip(x.cpu().numpy(),0,1)).astype(np.uint8)
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
from guidance.zero123_utils import Zero123
from PIL import Image
from torchvision.transforms import ToTensor
# from kaolin.metrics.pointcloud import chamfer_distance
from plyfile import PlyData
def scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, stage, tb_writer, train_iter,timer, args):
first_iter = 0
torch.cuda.empty_cache()
gc.collect()
print(f'Start training of stage {stage}: ')
zero123 = Zero123('cuda')
dir=f'data/{args.name}_pose0/'
if not os.path.exists(dir):
dir=f'data/{args.name}_rgba_pose0/'
# dir=f'data/{args.name}_rgba_pose0/'
# if args.i2v:
# frame_list=range(1, 1 + args.frame_num)
# e1lse:
frame_list = range(args.frame_num)
pose0_im_names = [dir + f'{x}.png' for x in frame_list]
if not os.path.exists(pose0_im_names[0]): # check 0 index
pose0_im_names = pose0_im_names[1:] + [dir + f'{args.frame_num}.png'] # use 1 index
print('pose0_im_names:',pose0_im_names)
T = ToTensor()
im_list = []
for fname in pose0_im_names:
im = Image.open(fname).resize((512, 512))
ww = T(im)
assert ww.shape[0] == 4
ww[:3] = ww[:3] * ww[-1:] + (1 - ww[-1:])
im_list.append((ww))
pose0_im = torch.stack(im_list).cuda().detach()
print('pose0_im shape:',pose0_im.shape)
pose0_embed1, pose0_embed2 = zero123.get_img_embeds_pil(pose0_im[:,:3, :, :] , pose0_im[:,:3, :, :] )
print('pose0_embed1 shape:',pose0_embed1.shape)
print('pose0_embed2 shape:',pose0_embed2.shape)
stage_ = ['static', 'coarse', 'fine']
train_iter_ = [opt.static_iterations, opt.coarse_iterations, opt.iterations]
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda", requires_grad=False)
lpips_model = lpips.LPIPS(net="alex").cuda()
for cur_stage, train_iter in zip(stage_, train_iter_):
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
ema_psnr_for_log = 0.0
final_iter = train_iter
progress_bar = tqdm(range(first_iter, final_iter), desc=f"[{args.expname}] Training progress")
video_cams = scene.getVideoCameras()
for iteration in range(first_iter, final_iter+1):
stage = cur_stage
loss_weight = 1
iter_start.record()
gaussians.update_learning_rate(iteration)
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras()
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=1,shuffle=True,num_workers=4,collate_fn=list)
frame_num = viewpoint_stack.pose0_num
loader = iter(viewpoint_stack_loader)
if True:
try:
data = next(loader)
except StopIteration:
print("reset dataloader")
batch_size = 1
loader = iter(viewpoint_stack_loader)
if (iteration - 1) == debug_from:
pipe.debug = True
images = []
gt_images = []
radii_list = []
visibility_filter_list = []
viewspace_point_tensor_list = []
dx = []
ds = []
dr = []
do = []
dc=[]
out_pts = []
if stage in ['static']:
viewpoint_cam = data[0]['t0_cam']
if stage == 'static':
render_pkg = render(viewpoint_cam, gaussians, pipe, background, stage=stage, time=0)
else:
raise NotImplementedError
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
rgba = torch.cat([image, render_pkg['alpha']], dim=0)
images.append(rgba.unsqueeze(0))
# gt_image = data[0]['gtim'].to(image.device)
gt_image = data[0]['t0'].to(image.device)
if data[0]['t0_idx'] == 0:
loss_weight = 10
# gt_image = data[0]['gtim'].to(image.device)
gt_images.append(gt_image.unsqueeze(0))
radii_list.append(radii.unsqueeze(0))
visibility_filter_list.append(visibility_filter.unsqueeze(0))
viewspace_point_tensor_list.append(viewspace_point_tensor)
elif stage == 'coarse':
for i in range(1):
time = data[0]['time']
viewpoint_cam = data[0]['t0_cam']
render_pkg = render(viewpoint_cam, gaussians, pipe, background, stage=stage, time=time, return_pts=True)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
means3D = render_pkg['means3D']
rgba = torch.cat([image, render_pkg['alpha']], dim=0)
images.append(rgba.unsqueeze(0))
gt_image = data[0]['gtim'].to(image.device)
gt_images.append(gt_image.unsqueeze(0))
if data[0]['t0_idx'] == 0:
loss_weight = 10
out_pts.append(means3D)
if 'dx' in render_pkg:
dx.append(render_pkg['dx'])
ds.append(render_pkg['ds'])
dr.append(render_pkg['dr'])
do.append(render_pkg['do'])
dc.append(render_pkg['dc'])
radii_list.append(radii.unsqueeze(0))
visibility_filter_list.append(visibility_filter.unsqueeze(0))
viewspace_point_tensor_list.append(viewspace_point_tensor)
else:
rand_seed=np.random.random()
if rand_seed< args.fine_rand_rate:
viewpoint_cam = data[0]['rand_poses']
fps = 1 / frame_num
set_t0_frame0 = True
t0 = 0
if frame_num > 16:
sds_idx_list = np.random.choice(range(frame_num), 16)
else:
sds_idx_list = range(frame_num)
# for i in range(frame_num):
for i in sds_idx_list:
time = torch.tensor([t0 + i * fps]).unsqueeze(0).float()
render_pkg = render(viewpoint_cam[i], gaussians, pipe, background, stage=stage, time=time)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
fg_mask = render_pkg['alpha']
rgba = torch.cat([image, fg_mask], dim=0)
images.append(rgba.unsqueeze(0))
if 'dx' in render_pkg:
dx.append(render_pkg['dx'])
ds.append(render_pkg['ds'])
dr.append(render_pkg['dr'])
do.append(render_pkg['do'])
dc.append(render_pkg['dc'])
radii_list.append(radii.unsqueeze(0))
visibility_filter_list.append(visibility_filter.unsqueeze(0))
viewspace_point_tensor_list.append(viewspace_point_tensor)
else:
for i in range(1):
time = data[0]['time']
viewpoint_cam = data[0]['t0_cam']
render_pkg = render(viewpoint_cam, gaussians, pipe, background, stage=stage, time=time, return_pts=True)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
means3D = render_pkg['means3D']
rgba = torch.cat([image, render_pkg['alpha']], dim=0)
images.append(rgba.unsqueeze(0))
gt_image = data[0]['gtim'].to(image.device)
gt_images.append(gt_image.unsqueeze(0))
if data[0]['t0_idx'] == 0:
loss_weight = 10
out_pts.append(means3D)
if 'dx' in render_pkg:
dx.append(render_pkg['dx'])
ds.append(render_pkg['ds'])
dr.append(render_pkg['dr'])
do.append(render_pkg['do'])
dc.append(render_pkg['dc'])
radii_list.append(radii.unsqueeze(0))
visibility_filter_list.append(visibility_filter.unsqueeze(0))
viewspace_point_tensor_list.append(viewspace_point_tensor)
radii = torch.cat(radii_list,0).max(dim=0).values
visibility_filter = torch.cat(visibility_filter_list).any(dim=0)
image_tensor = torch.cat(images,0)
if len(out_pts):
out_pts = torch.stack(out_pts,0)
use_zero123 = True
use_animate = False
if len(gt_images):
gt_image_tensor = torch.cat(gt_images,0)
if stage in ['static']:
Ll1 = l1_loss(image_tensor, gt_image_tensor)
tb_writer.add_scalar(f'{stage}/loss_recon', Ll1.item(), iteration)
lpipsloss = lpips_loss(image_tensor, gt_image_tensor,lpips_model)
tb_writer.add_scalar(f'{stage}/loss_lpips', lpipsloss.item(), iteration)
loss = Ll1 * 10 + lpipsloss * 20
elif stage == 'coarse':
Ll1 = l1_loss(image_tensor, gt_image_tensor)
tb_writer.add_scalar(f'{stage}/loss_recon', Ll1.item(), iteration)
lpipsloss = lpips_loss(image_tensor, gt_image_tensor,lpips_model)
tb_writer.add_scalar(f'{stage}/loss_lpips', lpipsloss.item(), iteration)
loss = Ll1 * 10 + lpipsloss * 20
time_now=int(time.item()*args.frame_num)
else:
if rand_seed < args.fine_rand_rate:
if use_zero123:
loss = 0
loss_zero123_total=0
for idx in sds_idx_list:
# for idx in range(0, frame_num):
cur_emb = (pose0_embed1[idx].unsqueeze(0), pose0_embed2[idx])
loss_zero123, im = zero123.train_step(image_tensor[idx:idx+1,:3, :, :], data[0]['rand_ver'][idx], data[0]['rand_hor'][idx], 0, cur_emb)
loss_zero123_total += loss_zero123
tb_writer.add_scalar(f'{stage}/loss_zero123', loss_zero123_total.item(), iteration)
loss += loss_zero123_total / len(sds_idx_list) * args.lambda_zero123
else:
Ll1 = l1_loss(image_tensor, gt_image_tensor)
tb_writer.add_scalar(f'{stage}/loss_recon', Ll1.item(), iteration)
lpipsloss = lpips_loss(image_tensor,gt_image_tensor,lpips_model)
tb_writer.add_scalar(f'{stage}/loss_lpips', lpipsloss.item(), iteration)
loss = Ll1 * 10 + lpipsloss * 20
time_now=int(time.item()*args.frame_num)
loss = loss * loss_weight
if stage == "fine" and hyper.time_smoothness_weight != 0:
tv_loss = gaussians.compute_regulation(hyper.time_smoothness_weight, hyper.plane_tv_weight, hyper.l1_time_planes)
loss += tv_loss
tb_writer.add_scalar(f'{stage}/loss_tv', tv_loss.item(), iteration)
if opt.lambda_dssim != 0 and len(gt_images) != 0:
ssim_loss = 1 - ssim(image_tensor,gt_image_tensor)
loss += opt.lambda_dssim * (ssim_loss)
tb_writer.add_scalar(f'{stage}/loss_ssim', ssim_loss.item(), iteration)
if opt.lambda_lpips != 0 and len(gt_images) != 0:
lpipsloss = lpips_loss(image_tensor,gt_image_tensor,lpips_model)
loss += opt.lambda_lpips * lpipsloss
tb_writer.add_scalar(f'{stage}/loss_lpips', lpipsloss.item(), iteration)
# if len(dx)!=1 and len(dx)!=0:
# loss_dx_tv = torch.stack([x if i else x.detach() for i, x in enumerate(dx[:-1])]) - torch.stack(dx[1:])
loss.backward()
viewspace_point_tensor_grad = torch.zeros_like(viewspace_point_tensor)
for idx in range(0, len(viewspace_point_tensor_list)):
if viewspace_point_tensor_list[idx].grad is not None:
viewspace_point_tensor_grad = viewspace_point_tensor_grad + viewspace_point_tensor_list[idx].grad
iter_end.record()
with torch.no_grad():
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
total_point = gaussians._xyz.shape[0]
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}",
"point":f"{total_point}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
timer.pause()
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, pipe, background, stage)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration, stage)
if dataset.render_process:
if (iteration < 1000 and iteration % 10 == 1) \
or (iteration < 3000 and iteration % 50 == 1) \
or (iteration < 10000 and iteration % 100 == 1) \
or (iteration < 60000 and iteration % 100 ==1):
render_training_image(scene, gaussians, video_cams, render, pipe, background, stage, iteration-1,timer.get_elapsed_time())
timer.start()
if stage == 'static' and iteration < opt.densify_until_iter:
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor_grad, visibility_filter)
if stage in ['static', "coarse"]:
opacity_threshold = opt.opacity_threshold_coarse
densify_threshold = opt.densify_grad_threshold_coarse
else:
opacity_threshold = opt.opacity_threshold_fine_init - iteration*(opt.opacity_threshold_fine_init - opt.opacity_threshold_fine_after)/(opt.densify_until_iter)
densify_threshold = opt.densify_grad_threshold_fine_init - iteration*(opt.densify_grad_threshold_fine_init - opt.densify_grad_threshold_after)/(opt.densify_until_iter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0 :
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
print('>>>>>>> Now densify')
gaussians.densify(densify_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
pruning_interval = opt.pruning_interval if stage != 'fine' else opt.pruning_interval_fine
if iteration > opt.pruning_from_iter and iteration % pruning_interval == 0:
print('>>>>>>> Now pruning', opt.opacity_reset_interval)
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.prune(densify_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def training(dataset, hyper, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, expname, args):
tb_writer = prepare_output_and_logger(expname)
gaussians = GaussianModel(dataset.sh_degree, hyper)
dataset.model_path = args.model_path
timer = Timer()
scene = Scene(dataset, gaussians,load_coarse=None)
timer.start()
scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, "coarse", tb_writer, opt.coarse_iterations,timer, args)
from datetime import datetime
def prepare_output_and_logger(expname):
if not args.model_path:
unique_str = str(datetime.today().strftime('%Y-%m-%d')) + '/' + expname + '_' + datetime.today().strftime('%H:%M:%S')
args.model_path = os.path.join("./output/", unique_str)
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, pipe, bg, stage):
if tb_writer:
tb_writer.add_scalar(f'{stage}/train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar(f'{stage}/train_loss_patchestotal_loss', loss.item(), iteration)
tb_writer.add_scalar(f'{stage}/iter_time', elapsed, iteration)
ww = iteration if stage == 'static' else iteration
if iteration % 100 == 0 and ww in testing_iterations:
torch.cuda.empty_cache()
train_set = scene.getTrainCameras()
validation_configs = [{'name': 'train', 'cameras' : [train_set[idx % len(train_set)] for idx in range(10, 5000, 299)]}]
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
ti = (torch.tensor([0]).unsqueeze(0))
cam_li = config['cameras'][0]['rand_poses']
im_li = []
num = len(cam_li)
for tii in range(num):
if stage == 'static':
ti = (torch.tensor([tii * 0]).unsqueeze(0).cuda())
else:
ti = (torch.tensor([tii / num]).unsqueeze(0).cuda())
viewpoint = cam_li[tii]
image = torch.clamp(renderFunc(viewpoint, scene.gaussians,stage=stage, pipe=pipe, bg_color=bg, time=ti)["render"], 0.0, 1.0)
im_li.append(image)
ww = len(im_li) // 2
r1 = torch.cat(im_li[:ww], dim=-1)
r2 = torch.cat(im_li[ww:], dim=-1)
im_li = torch.cat([r1, r2], dim=-2)
if tb_writer:
tb_writer.add_image(f"rand_seq/{stage}", im_li, global_step=iteration)
for idx, data in enumerate(config['cameras']):
if stage == 'static':
ti = (torch.tensor([0]).unsqueeze(0).cuda())
viewpoint = data['t0_cam']
else:
ti = data['time']
viewpoint = data['t0_cam']
image = torch.clamp(renderFunc(viewpoint, scene.gaussians,stage=stage, pipe=pipe, bg_color=bg, time=ti)["render"], 0.0, 1.0)
if stage == 'static':
gt_image = data['gtim'][:3].to(image.device)
elif stage == 'coarse':
gt_image = data['gtim'][:3].to(image.device)
else:
gt_image = data['gtim'][:3].to(image.device)
if tb_writer and (idx < 5):
tb_writer.add_images(stage + "/{}/render".format(idx), image[None], global_step=iteration)
tb_writer.add_images(stage + "/{}/gt".format(idx), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(stage + "/"+config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(stage+"/"+config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram(f"{stage}/scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar(f'{stage}/total_points', scene.gaussians.get_xyz.shape[0], iteration)
tb_writer.add_scalar(f'{stage}/deformation_rate', scene.gaussians._deformation_table.sum()/scene.gaussians.get_xyz.shape[0], iteration)
tb_writer.add_histogram(f"{stage}/scene/motion_histogram", scene.gaussians._deformation_accum.mean(dim=-1)/100, iteration,max_bins=500)
torch.cuda.empty_cache()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
torch.cuda.empty_cache()
parser = ArgumentParser(description="Training script parameters")
setup_seed(6666)
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
hp = ModelHiddenParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[i*50 for i in range(0,300)])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[2000,2500, 3000, 5000, 7_000, 8000, 9000, 14000, 20000, 30_000,45000,60000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument('-e', "--expname", type=str, default = "")
parser.add_argument("--configs", type=str, default = "arguments/ours/i2v.py")
parser.add_argument("--t0_frame0_rate", type=float, default = 1)
parser.add_argument("--name_override", type=str, default=None)
parser.add_argument("--sds_ratio_override", type=float, default=-1)
parser.add_argument("--sds_weight_override", type=float, default=-1)
parser.add_argument("--iteration", default=-1, type=int)
#parser.add_argument("--smooth_loss", default=False)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations - 1)
if args.configs:
import mmcv
from utils.params_utils import merge_hparams,merge_hparams2
config = mmcv.Config.fromfile(args.configs)
args = merge_hparams(args, config)
if args.name_override!=None:
args.name=args.name_override
print('args.name:',args.name)
if args.name_override != '':
args.name = args.name_override
if args.sds_ratio_override != -1:
args.fine_rand_rate = args.sds_ratio_override
if args.sds_weight_override != -1:
args.lambda_zero123 = args.sds_weight_override
# print(args.name)
print("Optimizing " + args.model_path)
safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
timer1 = Timer()
timer1.start()
print('Configs: ', args)
training(lp.extract(args), hp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.expname, args)
print("\nTraining complete.")
print('training time:',timer1.get_elapsed_time())
from render import render_sets
render_sets(lp.extract(args), hp.extract(args), op.extract(args), args.iterations, pp.extract(args), skip_train=True, skip_test=True, skip_video=False, multiview_video=True)
print("\Rendering complete.")