To run this example with IPEX-LLM on one Intel GPU, we have some recommended requirements for your machine, please refer to here for more information.
We suggest using conda to manage environment:
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install fastapi uvicorn openai
pip install gradio # for gradio web UI
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
# for internlm-xcomposer2-vl-7b
pip install transformers==4.31.0
pip install accelerate timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops
# for whisper-large-v3
pip install transformers==4.36.2
pip install datasets soundfile librosa # required by audio processing
We suggest using conda to manage environment:
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install fastapi uvicorn openai
pip install gradio # for gradio web UI
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
# for glm-4v-9b
pip install transformers==4.42.4 "trl<0.12.0"
# for internlm-xcomposer2-vl-7b
pip install transformers==4.31.0
pip install accelerate timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops
# for whisper-large-v3
pip install transformers==4.36.2
pip install datasets soundfile librosa # required by audio processing
Note
Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
source /opt/intel/oneapi/setvars.sh
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
Note: Please note that
libtcmalloc.so
can be installed byconda install -c conda-forge -y gperftools=2.10
.
For Intel iGPU
export SYCL_CACHE_PERSISTENT=1
For Intel iGPU and Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1
Note
For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
python ./lightweight_serving.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --low-bit LOW_BIT --port PORT
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the model (e.g.meta-llama/Llama-2-7b-chat-hf
andmeta-llama/Llama-2-13b-chat-hf
) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'meta-llama/Llama-2-7b-chat-hf'
.--low-bit LOW_BIT
: Sets the low bit optimizations (such as 'sym_int4', 'fp16', 'fp8' and 'fp6') for the model. It is default to besym_int4
.--port PORT
: The serving access port. It is default to be8000
.
We can use curl
to test serving api. And need to set no_proxy to ensure that requests are not forwarded by a proxy. export no_proxy=localhost,127.0.0.1
curl -X POST -H "Content-Type: application/json" -d '{
"inputs": "What is AI?",
"parameters": {
"max_new_tokens": 32,
"min_new_tokens": 32,
"repetition_penalty": 1.0,
"temperature": 1.0,
"do_sample": false,
"top_k": 5,
"tok_p": 1.0
},
"stream": false
}' http://localhost:8000/generate
curl -X POST -H "Content-Type: application/json" -d '{
"inputs": "What is AI?",
"parameters": {
"max_new_tokens": 32,
"min_new_tokens": 32,
"repetition_penalty": 1.0,
"temperature": 1.0,
"do_sample": false,
"top_k": 5,
"tok_p": 1.0
},
"stream": false
}' http://localhost:8000/generate_stream
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Llama-2-7b-chat-hf",
"messages": [{"role": "user", "content": "Hello! What is your name?"}],
"stream": false
}'
image input only supports internlm-xcomposer2-vl-7b and glm-4v-9b now. And they should both install specific transformers version to run.
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "internlm-xcomposer2-vl-7b",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What'\''s in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"
}
}
]
}
],
"max_tokens": 128
}'
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Llama-2-7b-chat-hf",
"prompt": "Once upon a time",
"max_tokens": 32,
"stream": false
}'
ASR only supports whisper-large-v3 now. And whisper-large-v3
just can be used to transcription audio. The audio file_type should be supported by librosa.load
.
curl http://localhost:8000/v1/audio/transcriptions \
-H "Content-Type: multipart/form-data" \
-F file="@/llm/test.mp3" \
-F model="whisper-large-v3" \
-F languag="zh"
Please refer to here for more details
Please refer to here for more details
Please refer to here for more details