forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SampledAddmmKernel.cpp
99 lines (84 loc) · 3.13 KB
/
SampledAddmmKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/ExpandUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/native/cpu/SampledAddmmKernel.h>
#include <ATen/native/cpu/utils.h>
#include <c10/util/irange.h>
namespace at::native {
namespace {
template <typename scalar_t, typename index_t>
void sampled_addmm_sparse_csr_kernel_impl(
const Tensor& mat1,
const Tensor& mat2,
const Scalar& beta,
const Scalar& alpha,
const Tensor& result) {
int64_t nnz = result._nnz();
auto beta_ = beta.to<scalar_t>();
auto alpha_ = alpha.to<scalar_t>();
const scalar_t* mat1_data = mat1.const_data_ptr<scalar_t>();
const scalar_t* mat2_data = mat2.const_data_ptr<scalar_t>();
// mat1: {B, M, K}
// mat2: {B, N, K}
// crow: {B, M + 1}
// col, values: {B, nnz}
int64_t M = mat1.size(-2);
int64_t K = mat1.size(-1);
int64_t N = mat2.size(-2);
int64_t B = mat1.numel() / M / K;
auto values = result.values().reshape({-1, nnz});
auto crow = result.crow_indices().reshape({-1, M + 1});
auto col = result.col_indices().reshape({-1, nnz});
auto values_acc = values.accessor<scalar_t, 2>();
auto crow_acc = crow.accessor<const index_t, 2>();
auto col_acc = col.accessor<const index_t, 2>();
// usually, collapse B and M is a better option,
// but for most commonly used case (mat1 and mat2 is 2d tensor), B = 1,
// balance partition M by using parallel_sparse_csr.
using Vec = vec::Vectorized<scalar_t>;
for (const auto b : c10::irange(B)) {
auto crow_slice = crow_acc[b];
auto col_slice = col_acc[b];
auto values_slice = values_acc[b];
const scalar_t* mat1_ptr = mat1_data + b * M * K;
const scalar_t* mat2_ptr = mat2_data + b * N * K;
utils::parallel_sparse_csr(crow_slice, M, nnz, [&](int64_t begin, int64_t end) {
for (const auto m : c10::irange(begin, end)) {
int64_t row_start = crow_slice[m];
int64_t row_end = crow_slice[m + 1];
for (const auto e : c10::irange(row_start, row_end)) {
int64_t n = col_slice[e];
scalar_t val = values_slice[e];
scalar_t dot = vec::map2_reduce_all<scalar_t>(
[](Vec x, Vec y) { return x * y; },
[](Vec x, Vec y) { return x + y; },
mat1_ptr + m * K,
mat2_ptr + n * K,
K);
val = alpha_ * dot + beta_ * val;
values_slice[e] = val;
}
}
});
}
}
void sampled_addmm_sparse_csr_kernel(
const Tensor& mat1,
const Tensor& mat2,
const Scalar& beta,
const Scalar& alpha,
const Tensor& result) {
const auto index_type = result.crow_indices().scalar_type();
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(mat1.scalar_type(), "sampled_addmm_sparse_csr_kernel", [&]() {
AT_DISPATCH_INDEX_TYPES(index_type, "sampled_addmm_sparse_csr_index", [&]() {
sampled_addmm_sparse_csr_kernel_impl<scalar_t, index_t>(mat1, mat2, beta, alpha, result);
});
});
}
} // anonymous namespace
REGISTER_DISPATCH(sampled_addmm_sparse_csr_stub, &sampled_addmm_sparse_csr_kernel)
} // at::native