-
Notifications
You must be signed in to change notification settings - Fork 4
/
Triangle.js
executable file
·333 lines (206 loc) · 6.85 KB
/
Triangle.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import { Vector3 } from './Vector3.js';
/**
* Copyright © 2010-2021 three.js authors
*/
var _v0 = new Vector3();
var _v1 = new Vector3();
var _v2 = new Vector3();
var _v3 = new Vector3();
var _vab = new Vector3();
var _vac = new Vector3();
var _vbc = new Vector3();
var _vap = new Vector3();
var _vbp = new Vector3();
var _vcp = new Vector3();
function Triangle( a, b, c ) {
this.a = ( a !== undefined ) ? a : new Vector3();
this.b = ( b !== undefined ) ? b : new Vector3();
this.c = ( c !== undefined ) ? c : new Vector3();
}
Object.assign( Triangle, {
getNormal: function ( a, b, c, target ) {
if ( target === undefined ) {
console.warn( 'Triangle: .getNormal() target is now required' );
target = new Vector3();
}
target.subVectors( c, b );
_v0.subVectors( a, b );
target.cross( _v0 );
var targetLengthSq = target.lengthSq();
if ( targetLengthSq > 0 ) {
return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) );
}
return target.set( 0, 0, 0 );
},
// static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
getBarycoord: function ( point, a, b, c, target ) {
_v0.subVectors( c, a );
_v1.subVectors( b, a );
_v2.subVectors( point, a );
var dot00 = _v0.dot( _v0 );
var dot01 = _v0.dot( _v1 );
var dot02 = _v0.dot( _v2 );
var dot11 = _v1.dot( _v1 );
var dot12 = _v1.dot( _v2 );
var denom = ( dot00 * dot11 - dot01 * dot01 );
if ( target === undefined ) {
console.warn( 'Triangle: .getBarycoord() target is now required' );
target = new Vector3();
}
// collinear or singular triangle
if ( denom === 0 ) {
// arbitrary location outside of triangle?
// not sure if this is the best idea, maybe should be returning undefined
return target.set( - 2, - 1, - 1 );
}
var invDenom = 1 / denom;
var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
// barycentric coordinates must always sum to 1
return target.set( 1 - u - v, v, u );
},
containsPoint: function ( point, a, b, c ) {
Triangle.getBarycoord( point, a, b, c, _v3 );
return ( _v3.x >= 0 ) && ( _v3.y >= 0 ) && ( ( _v3.x + _v3.y ) <= 1 );
},
getUV: function ( point, p1, p2, p3, uv1, uv2, uv3, target ) {
this.getBarycoord( point, p1, p2, p3, _v3 );
target.set( 0, 0 );
target.addScaledVector( uv1, _v3.x );
target.addScaledVector( uv2, _v3.y );
target.addScaledVector( uv3, _v3.z );
return target;
},
isFrontFacing: function ( a, b, c, direction ) {
_v0.subVectors( c, b );
_v1.subVectors( a, b );
// strictly front facing
return ( _v0.cross( _v1 ).dot( direction ) < 0 ) ? true : false;
}
} );
Object.assign( Triangle.prototype, {
set: function ( a, b, c ) {
this.a.copy( a );
this.b.copy( b );
this.c.copy( c );
return this;
},
setFromPointsAndIndices: function ( points, i0, i1, i2 ) {
this.a.copy( points[ i0 ] );
this.b.copy( points[ i1 ] );
this.c.copy( points[ i2 ] );
return this;
},
clone: function () {
return new this.constructor().copy( this );
},
copy: function ( triangle ) {
this.a.copy( triangle.a );
this.b.copy( triangle.b );
this.c.copy( triangle.c );
return this;
},
getArea: function () {
_v0.subVectors( this.c, this.b );
_v1.subVectors( this.a, this.b );
return _v0.cross( _v1 ).length() * 0.5;
},
getMidpoint: function ( target ) {
if ( target === undefined ) {
console.warn( 'Triangle: .getMidpoint() target is now required' );
target = new Vector3();
}
return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
},
getNormal: function ( target ) {
return Triangle.getNormal( this.a, this.b, this.c, target );
},
getPlane: function ( target ) {
if ( target === undefined ) {
console.warn( 'Triangle: .getPlane() target is now required' );
target = new Vector3();
}
return target.setFromCoplanarPoints( this.a, this.b, this.c );
},
getBarycoord: function ( point, target ) {
return Triangle.getBarycoord( point, this.a, this.b, this.c, target );
},
getUV: function ( point, uv1, uv2, uv3, target ) {
return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target );
},
containsPoint: function ( point ) {
return Triangle.containsPoint( point, this.a, this.b, this.c );
},
isFrontFacing: function ( direction ) {
return Triangle.isFrontFacing( this.a, this.b, this.c, direction );
},
intersectsBox: function ( box ) {
return box.intersectsTriangle( this );
},
closestPointToPoint: function ( p, target ) {
if ( target === undefined ) {
console.warn( 'Triangle: .closestPointToPoint() target is now required' );
target = new Vector3();
}
var a = this.a, b = this.b, c = this.c;
var v, w;
// algorithm thanks to Real-Time Collision Detection by Christer Ericson,
// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
// under the accompanying license; see chapter 5.1.5 for detailed explanation.
// basically, we're distinguishing which of the voronoi regions of the triangle
// the point lies in with the minimum amount of redundant computation.
_vab.subVectors( b, a );
_vac.subVectors( c, a );
_vap.subVectors( p, a );
var d1 = _vab.dot( _vap );
var d2 = _vac.dot( _vap );
if ( d1 <= 0 && d2 <= 0 ) {
// vertex region of A; barycentric coords (1, 0, 0)
return target.copy( a );
}
_vbp.subVectors( p, b );
var d3 = _vab.dot( _vbp );
var d4 = _vac.dot( _vbp );
if ( d3 >= 0 && d4 <= d3 ) {
// vertex region of B; barycentric coords (0, 1, 0)
return target.copy( b );
}
var vc = d1 * d4 - d3 * d2;
if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) {
v = d1 / ( d1 - d3 );
// edge region of AB; barycentric coords (1-v, v, 0)
return target.copy( a ).addScaledVector( _vab, v );
}
_vcp.subVectors( p, c );
var d5 = _vab.dot( _vcp );
var d6 = _vac.dot( _vcp );
if ( d6 >= 0 && d5 <= d6 ) {
// vertex region of C; barycentric coords (0, 0, 1)
return target.copy( c );
}
var vb = d5 * d2 - d1 * d6;
if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) {
w = d2 / ( d2 - d6 );
// edge region of AC; barycentric coords (1-w, 0, w)
return target.copy( a ).addScaledVector( _vac, w );
}
var va = d3 * d6 - d5 * d4;
if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) {
_vbc.subVectors( c, b );
w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) );
// edge region of BC; barycentric coords (0, 1-w, w)
return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC
}
// face region
var denom = 1 / ( va + vb + vc );
// u = va * denom
v = vb * denom;
w = vc * denom;
return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w );
},
equals: function ( triangle ) {
return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
}
} );
export { Triangle };