forked from BoysTownOrg/chapro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tst_cffio.c
284 lines (247 loc) · 6.33 KB
/
tst_cffio.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#ifndef ARDUINO
// tst_cffio.c - test complex FIR-filterbank i/o with impulse signal
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <ctype.h>
#include <sigpro.h>
#include "chapro.h"
#define DATA_HDR "tst_cffio_data.h"
//#include DATA_HDR
typedef struct {
char *ifn, *ofn, cs, mat;
double rate;
float *iwav, *owav;
int32_t *siz;
int32_t iod, nwav, nsmp, mseg, nseg, oseg, pseg;
void **out;
} I_O;
/***********************************************************/
static struct {
char *ifn, *ofn, mat, tone_io;
int nw;
} args;
/***********************************************************/
// initialize io
static void
usage()
{
fprintf(stdout, "usage: tst_ffio [-options]\n");
fprintf(stdout, "options\n");
fprintf(stdout, "-c N compress with gain=N (dB) [0]\n");
fprintf(stdout, "-h print help\n");
fprintf(stdout, "-t tone response [default is impulse]\n");
fprintf(stdout, "-v print version\n");
fprintf(stdout, "-w N window size [128]\n");
exit(0);
}
static void
version()
{
fprintf(stdout, "%s\n", cha_version());
exit(0);
}
static void
parse_args(int ac, char *av[])
{
args.nw = 0;
args.tone_io = 0;
while (ac > 1) {
if (av[1][0] == '-') {
if (av[1][1] == 'h') {
usage();
} else if (av[1][1] == 't') {
args.tone_io = 1;
} else if (av[1][1] == 'v') {
version();
} else if (av[1][1] == 'w') {
args.nw = atoi(av[2]);
ac--;
av++;
}
ac--;
av++;
} else {
break;
}
}
}
static void
init_wav(I_O *io)
{
float f, p;
int i;
/* second impulse input */
io->nwav = round(io->rate);
io->iwav = (float *) calloc(io->nwav, sizeof(float));
fprintf(stdout, "CFIRFB i/o with ");
if (args.tone_io == 0) {
fprintf(stdout, "impulse: \n");
io->ofn = "test/cffio_impulse.mat";
io->iwav[0] = 1;
} else {
fprintf(stdout, "tone: \n");
f = 1000;
p = (float) ((2 * M_PI * f) / io->rate);
io->ofn = "test/cffio_tone.mat";
for (i = 0; i < io->nwav; i++) {
io->iwav[i] = (float) sin(i * p);
}
}
io->nsmp = io->nwav;
io->mseg = 1;
io->nseg = 1;
io->owav = (float *) calloc(io->nsmp, sizeof(float));
}
static void
write_wave(I_O *io)
{
char *ft;
float r[1], *x, *y;
int n;
static VAR *vl;
ft = "MAT";
fprintf(stdout, "%s output: %s\n", ft, io->ofn);
remove(io->ofn);
n = io->nwav;
x = io->iwav;
y = io->owav;
r[0] = (float) io->rate;
vl = sp_var_alloc(3);
sp_var_add(vl, "rate", r, 1, 1, "f4");
sp_var_add(vl, "x", x, n, 1, "f4");
sp_var_add(vl, "y", y, n, 1, "f4");
sp_mat_save(io->ofn, vl);
sp_var_clear(vl);
}
/***********************************************************/
// specify filterbank crossover frequencies
static int
cross_freq(double *cf, double sr)
{
int i, nh, nc, nm = 5;
double fmin = 250, fmid = 1000, bpo = 3;
nh = (int) floor(log2((float)sr / 2000) * bpo);
nc = nh + nm;
for (i = 0; i < nm; i++) {
cf[i] = fmin + i * (fmid - fmin) / (nm - 0.5);
}
for (i = 0; i < nh; i++) {
cf[i + nm] = fmid * pow(2.0, (i + 0.5) / bpo);
}
return (nc + 1); // return number of channels = crossovers + 1
}
// CSL prescription
static void
compressor_init(CHA_CLS *cls, double *cf, double sr, double gn, int nc)
{
double f1, f2;
int k, n;
// set compression mode
cls->cm = 1;
// loop over filterbank channel
cls->nc = nc;
n = nc - 1;
for (k = 0; k < nc; k++) {
cls->Lcs[k] = 0;
cls->Lcm[k] = 50;
cls->Lce[k] = 100;
cls->Lmx[k] = 120;
cls->Gcs[k] = (float) gn;
cls->Gcm[k] = (float) gn / 2;
cls->Gce[k] = 0;
cls->Gmx[k] = 90;
f1 = (k > 0) ? cf[k - 1] : 0;
f2 = (k < n) ? cf[k] : sr / 2;
cls->bw[k] = f2 - f1;
}
}
/***********************************************************/
// prepare CFIR filterbank
static void
prepare_filterbank(CHA_PTR cp)
{
double cf[32];
int nc;
static double sr = 24000; // sampling rate (Hz)
static int nw = 256; // window size
static int cs = 32; // chunk size
static int wt = 0; // window type: 0=Hamming, 1=Blackman
// prepare CFIRFB
if (args.nw) nw = args.nw;
nc = cross_freq(cf, sr);
cha_cfirfb_prepare(cp, cf, nc, sr, nw, wt, cs);
}
// prepare signal processing
static void
prepare(I_O *io, CHA_PTR cp)
{
double fs, sr, cf[32];
int nc, nw;
CHA_CLS cls;
static double lr = 2e-5; // signal-level reference (Pa)
static double gn = 20; // flat suppressor gain (dB)
static int ds = 24; // downsample factor
prepare_filterbank(cp);
fs = CHA_DVAR[_fs];
nw = CHA_IVAR[_nw];
// prepare compressor
sr = fs * 1000;
nc = cross_freq(cf, sr);
compressor_init(&cls, cf, sr, gn, nc);
cha_icmp_prepare(cp, &cls, sr, lr, ds);
// initialize waveform
io->rate = sr;
io->ifn = args.ifn;
io->ofn = args.ofn;
io->mat = args.mat;
init_wav(io);
// generate C code from prepared data
//cha_data_gen(cp, DATA_HDR);
// report
fprintf(stdout, "CHA I/O simulation: sampling rate=%.1f kHz, ", fs);
fprintf(stdout, "CFIRFB: nw=%d\n", nw);
}
// process signal
static void
process(I_O *io, CHA_PTR cp)
{
float *x, *y, *z;
int i, n, cs, nk;
// next line switches to compiled data
//cp = (CHA_PTR) cha_data;
// initialize i/o pointers
x = io->iwav;
y = io->owav;
z = CHA_CB;
n = io->nwav;
// process CFIRFB
cs = CHA_IVAR[_cs]; // chunk size
nk = n / cs; // number of chunks
for (i = 0; i < nk; i++) {
cha_cfirfb_analyze(cp, x + i * cs, z, cs);
cha_cfirfb_synthesize(cp, z, y + i * cs, cs);
}
}
// clean up io
static void
cleanup(I_O *io, CHA_PTR cp)
{
write_wave(io);
cha_cleanup(cp);
}
/***********************************************************/
int
main(int ac, char *av[])
{
static I_O io;
static void *cp[NPTR] = {0};
parse_args(ac, av);
prepare(&io, cp);
process(&io, cp);
cleanup(&io, cp);
return (0);
}
#endif