-
Notifications
You must be signed in to change notification settings - Fork 842
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Adding intersectional bias mitigation to AIF360 #538
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,2 @@ | ||
from aif360.algorithms.transformer import Transformer, addmetadata | ||
from aif360.algorithms.intersectional_fairness import IntersectionalFairness |
Large diffs are not rendered by default.
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Copyright 2023 Fujitsu Limited | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
from aif360.algorithms.inprocessing.adversarial_debiasing import AdversarialDebiasing as AD | ||
import tensorflow as tf | ||
|
||
from aif360.algorithms.isf_helpers.inprocessing.inprocessing import InProcessing | ||
|
||
|
||
tf.compat.v1.disable_eager_execution() | ||
|
||
|
||
class AdversarialDebiasing(InProcessing): | ||
|
||
""" | ||
Debiasing intersectional bias with adversarial learning(AD) called by ISF. | ||
|
||
Parameters | ||
---------- | ||
options : dictionary | ||
parameter of AdversarialDebiasing | ||
num_epochs: trials of model training | ||
batch_size:Batch size for model training | ||
|
||
Notes | ||
----- | ||
https://aif360.readthedocs.io/en/v0.2.3/_modules/aif360/algorithms/inprocessing/adversarial_debiasing.html | ||
|
||
""" | ||
|
||
def __init__(self, options): | ||
super().__init__() | ||
self.ds_train = None | ||
self.options = options | ||
|
||
def fit(self, ds_train): | ||
""" | ||
Save training dataset | ||
|
||
Attributes | ||
---------- | ||
ds_train : Dataset | ||
Dataset for training | ||
""" | ||
self.ds_train = ds_train.copy(deepcopy=True) | ||
|
||
def predict(self, ds_test): | ||
""" | ||
Model learning with debias using the training dataset imported by fit(), and predict using that model | ||
|
||
Parameters | ||
---------- | ||
ds_test : Dataset | ||
Dataset for prediction | ||
|
||
Returns | ||
------- | ||
ds_predict : numpy.ndarray | ||
Predicted label | ||
""" | ||
ikey = ds_test.protected_attribute_names[0] | ||
priv_g = [{ikey: ds_test.privileged_protected_attributes[0]}] | ||
upriv_g = [{ikey: ds_test.unprivileged_protected_attributes[0]}] | ||
sess = tf.compat.v1.Session() | ||
model = AD( | ||
privileged_groups=priv_g, | ||
unprivileged_groups=upriv_g, | ||
scope_name='debiased_classifier', | ||
debias=True, | ||
sess=sess) | ||
model.fit(self.ds_train) | ||
ds_predict = model.predict(ds_test) | ||
sess.close() | ||
tf.compat.v1.reset_default_graph() | ||
return ds_predict | ||
|
||
def bias_predict(self, ds_train): | ||
""" | ||
Model learning and prediction using AdversarialDebiasing of AIF360 without debias. | ||
|
||
Parameters | ||
---------- | ||
ds_train : Dataset | ||
Dataset for training and prediction | ||
|
||
Returns | ||
------- | ||
ds_predict : numpy.ndarray | ||
Predicted label | ||
""" | ||
ikey = ds_train.protected_attribute_names[0] | ||
priv_g = [{ikey: ds_train.privileged_protected_attributes[0]}] | ||
upriv_g = [{ikey: ds_train.unprivileged_protected_attributes[0]}] | ||
sess = tf.compat.v1.Session() | ||
model = AD( | ||
privileged_groups=priv_g, | ||
unprivileged_groups=upriv_g, | ||
scope_name='plain_classifier', | ||
debias=False, | ||
sess=sess, | ||
num_epochs=self.options['num_epochs'], | ||
batch_size=self.options['batch_size']) | ||
model.fit(ds_train) | ||
ds_predict = model.predict(ds_train) | ||
sess.close() | ||
tf.compat.v1.reset_default_graph() | ||
return ds_predict | ||
Comment on lines
+91
to
+121
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. unused |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Copyright 2023 Fujitsu Limited | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from abc import ABCMeta | ||
from abc import abstractmethod | ||
|
||
|
||
class InProcessing(metaclass=ABCMeta): | ||
""" | ||
Abstract Base Class for all inprocessing techniques. | ||
""" | ||
def __init__(self): | ||
super().__init__() | ||
#the following line is need if we decide to expand support for more inprocessing algorithms besides adversarial debiasing | ||
#self.model = None | ||
|
||
@abstractmethod | ||
def fit(self, ds_train): | ||
""" | ||
Train a model on the input. | ||
|
||
Parameters | ||
---------- | ||
ds_train : Dataset | ||
Training Dataset. | ||
""" | ||
pass | ||
|
||
@abstractmethod | ||
def predict(self, ds): | ||
""" | ||
Predict on the input. | ||
|
||
Parameters | ||
---------- | ||
ds : Dataset | ||
Dataset to predict. | ||
""" | ||
pass |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# -*- coding: utf-8 -*- | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Copyright 2023 Fujitsu Limited | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
from matplotlib.gridspec import GridSpec | ||
import seaborn as sns | ||
|
||
from aif360.algorithms.isf_helpers.isf_metrics.disparate_impact import DisparateImpact | ||
from aif360.algorithms.isf_helpers.isf_utils.common import create_multi_group_label | ||
|
||
|
||
def calc_intersectionalbias(dataset, metric="DisparateImpact"): | ||
""" | ||
Calculate intersectional bias(DisparateImpact) by more than one sensitive attributes | ||
|
||
Parameters | ||
---------- | ||
dataset : StructuredDataset | ||
A dataset containing more than one sensitive attributes | ||
|
||
metric : str | ||
Fairness metric name | ||
["DisparateImpact"] | ||
|
||
Returns | ||
------- | ||
df_result : DataFrame | ||
Intersectional bias(DisparateImpact) | ||
""" | ||
|
||
df = dataset.convert_to_dataframe()[0] | ||
label_info = {dataset.label_names[0]: dataset.favorable_label} | ||
|
||
if metric == "DisparateImpact": | ||
fs = DisparateImpact() | ||
else: | ||
raise ValueError("metric name not in the list of allowed metrics") | ||
|
||
df_result = pd.DataFrame(columns=[metric]) | ||
for multi_group_label in create_multi_group_label(dataset)[0]: | ||
protected_attr_info = multi_group_label[0] | ||
di = fs.bias_predict(df, | ||
protected_attr_info=protected_attr_info, | ||
label_info=label_info) | ||
name = '' | ||
for k, v in protected_attr_info.items(): | ||
name += k + " = " + str(v) + "," | ||
df_result.loc[name[:-1]] = di | ||
|
||
return df_result | ||
Comment on lines
+27
to
+65
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. is it possible to use the built-in
|
||
|
||
|
||
def plot_intersectionalbias_compare(ds_bef, ds_aft, vmax=1, vmin=0, center=0, | ||
metric="DisparateImpact", | ||
title={"right": "before", "left": "after"}, | ||
filename=None): | ||
""" | ||
Compare drawing of intersectional bias in heat map | ||
|
||
Parameters | ||
---------- | ||
ds_bef : StructuredDataset | ||
Dataset containing two sensitive attributes (left figure) | ||
ds_aft : StructuredDataset | ||
Dataset containing two sensitive attributes (right figure) | ||
filename : str, optional | ||
File name(png) | ||
e.g. "./result/pict.png" | ||
metric : str | ||
Fairness metric name | ||
["DisparateImpact"] | ||
title : dictonary, optional | ||
Graph title (right figure, left figure) | ||
""" | ||
|
||
df_bef = calc_intersectionalbias_matrix(ds_bef, metric) | ||
df_aft = calc_intersectionalbias_matrix(ds_aft, metric) | ||
|
||
gs = GridSpec(1, 2) | ||
ss1 = gs.new_subplotspec((0, 0)) | ||
ss2 = gs.new_subplotspec((0, 1)) | ||
|
||
ax1 = plt.subplot(ss1) | ||
ax2 = plt.subplot(ss2) | ||
|
||
ax1.set_title(title['right']) | ||
sns.heatmap(df_bef, ax=ax1, vmax=vmax, vmin=vmin, center=center, annot=True, cmap='hot') | ||
|
||
ax2.set_title(title['left']) | ||
sns.heatmap(df_aft, ax=ax2, vmax=vmax, vmin=vmin, center=center, annot=True, cmap='hot') | ||
|
||
if filename is not None: | ||
plt.savefig(filename, format="png", dpi=300) | ||
plt.show() | ||
|
||
|
||
def calc_intersectionalbias_matrix(dataset, metric="DisparateImpact"): | ||
""" | ||
Comparison drawing of intersectional bias in heat map | ||
|
||
Parameters | ||
---------- | ||
dataset : StructuredDataset | ||
Dataset containing two sensitive attributes | ||
metric : str | ||
Fairness metric name | ||
["DisparateImpact"] | ||
|
||
Returns | ||
------- | ||
df_result : DataFrame | ||
Intersectional bias(DisparateImpact) | ||
""" | ||
|
||
protect_attr = dataset.protected_attribute_names | ||
|
||
if len(protect_attr) != 2: | ||
raise ValueError("specify 2 sensitive attributes.") | ||
|
||
if metric == "DisparateImpact": | ||
fs = DisparateImpact() | ||
else: | ||
raise ValueError("metric name not in the list of allowed metrics") | ||
|
||
df = dataset.convert_to_dataframe()[0] | ||
label_info = {dataset.label_names[0]: dataset.favorable_label} | ||
|
||
protect_attr0_values = list(set(df[protect_attr[0]])) | ||
protect_attr1_values = list(set(df[protect_attr[1]])) | ||
|
||
df_result = pd.DataFrame(columns=protect_attr1_values) | ||
|
||
for val0 in protect_attr0_values: | ||
tmp_li = [] | ||
col_list = [] | ||
for val1 in protect_attr1_values: | ||
di = fs.bias_predict(df, | ||
protected_attr_info={protect_attr[0]: val0, protect_attr[1]: val1}, | ||
label_info=label_info) | ||
tmp_li += [di] | ||
col_list += [protect_attr[1]+"="+str(val1)] | ||
|
||
df_result.loc[protect_attr[0]+"="+str(val0)] = tmp_li | ||
df_result = df_result.set_axis(col_list, axis=1) | ||
|
||
return df_result | ||
Comment on lines
+112
to
+161
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. this seems largely redundant with |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
is there any way we can just use the
AdversarialDebiasing
class directly instead of this wrapper? this doesn't seem to be doing much.