-
Notifications
You must be signed in to change notification settings - Fork 842
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Initial commit of intersectional bias mitigation algorithm
Signed-off-by: Kalousios <[email protected]>
- Loading branch information
Showing
20 changed files
with
4,700 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,2 @@ | ||
from aif360.algorithms.transformer import Transformer, addmetadata | ||
from aif360.algorithms.intersectional_fairness import IntersectionalFairness |
Large diffs are not rendered by default.
Oops, something went wrong.
121 changes: 121 additions & 0 deletions
121
aif360/algorithms/isf_helpers/inprocessing/adversarial_debiasing.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Copyright 2023 Fujitsu Limited | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
from aif360.algorithms.inprocessing.adversarial_debiasing import AdversarialDebiasing as AD | ||
import tensorflow as tf | ||
|
||
from aif360.algorithms.isf_helpers.inprocessing.inprocessing import InProcessing | ||
|
||
|
||
tf.compat.v1.disable_eager_execution() | ||
|
||
|
||
class AdversarialDebiasing(InProcessing): | ||
|
||
""" | ||
Debiasing intersectional bias with adversarial learning(AD) called by ISF. | ||
Parameters | ||
---------- | ||
options : dictionary | ||
parameter of AdversarialDebiasing | ||
num_epochs: trials of model training | ||
batch_size:Batch size for model training | ||
Notes | ||
----- | ||
https://aif360.readthedocs.io/en/v0.2.3/_modules/aif360/algorithms/inprocessing/adversarial_debiasing.html | ||
""" | ||
|
||
def __init__(self, options): | ||
super().__init__() | ||
self.ds_train = None | ||
self.options = options | ||
|
||
def fit(self, ds_train): | ||
""" | ||
Save training dataset | ||
Attributes | ||
---------- | ||
ds_train : Dataset | ||
Dataset for training | ||
""" | ||
self.ds_train = ds_train.copy(deepcopy=True) | ||
|
||
def predict(self, ds_test): | ||
""" | ||
Model learning with debias using the training dataset imported by fit(), and predict using that model | ||
Parameters | ||
---------- | ||
ds_test : Dataset | ||
Dataset for prediction | ||
Returns | ||
------- | ||
ds_predict : numpy.ndarray | ||
Predicted label | ||
""" | ||
ikey = ds_test.protected_attribute_names[0] | ||
priv_g = [{ikey: ds_test.privileged_protected_attributes[0]}] | ||
upriv_g = [{ikey: ds_test.unprivileged_protected_attributes[0]}] | ||
sess = tf.compat.v1.Session() | ||
model = AD( | ||
privileged_groups=priv_g, | ||
unprivileged_groups=upriv_g, | ||
scope_name='debiased_classifier', | ||
debias=True, | ||
sess=sess) | ||
model.fit(self.ds_train) | ||
ds_predict = model.predict(ds_test) | ||
sess.close() | ||
tf.compat.v1.reset_default_graph() | ||
return ds_predict | ||
|
||
def bias_predict(self, ds_train): | ||
""" | ||
Model learning and prediction using AdversarialDebiasing of AIF360 without debias. | ||
Parameters | ||
---------- | ||
ds_train : Dataset | ||
Dataset for training and prediction | ||
Returns | ||
------- | ||
ds_predict : numpy.ndarray | ||
Predicted label | ||
""" | ||
ikey = ds_train.protected_attribute_names[0] | ||
priv_g = [{ikey: ds_train.privileged_protected_attributes[0]}] | ||
upriv_g = [{ikey: ds_train.unprivileged_protected_attributes[0]}] | ||
sess = tf.compat.v1.Session() | ||
model = AD( | ||
privileged_groups=priv_g, | ||
unprivileged_groups=upriv_g, | ||
scope_name='plain_classifier', | ||
debias=False, | ||
sess=sess, | ||
num_epochs=self.options['num_epochs'], | ||
batch_size=self.options['batch_size']) | ||
model.fit(ds_train) | ||
ds_predict = model.predict(ds_train) | ||
sess.close() | ||
tf.compat.v1.reset_default_graph() | ||
return ds_predict |
51 changes: 51 additions & 0 deletions
51
aif360/algorithms/isf_helpers/inprocessing/inprocessing.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Copyright 2023 Fujitsu Limited | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from abc import ABCMeta | ||
from abc import abstractmethod | ||
|
||
|
||
class InProcessing(metaclass=ABCMeta): | ||
""" | ||
Abstract Base Class for all inprocessing techniques. | ||
""" | ||
def __init__(self): | ||
super().__init__() | ||
self.model = None | ||
|
||
@abstractmethod | ||
def fit(self, ds_train): | ||
""" | ||
Train a model on the input. | ||
Parameters | ||
---------- | ||
ds_train : Dataset | ||
Training Dataset. | ||
""" | ||
pass | ||
|
||
@abstractmethod | ||
def predict(self, ds): | ||
""" | ||
Predict on the input. | ||
Parameters | ||
---------- | ||
ds : Dataset | ||
Dataset to predict. | ||
""" | ||
pass |
161 changes: 161 additions & 0 deletions
161
aif360/algorithms/isf_helpers/isf_analysis/intersectional_bias.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# -*- coding: utf-8 -*- | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Copyright 2023 Fujitsu Limited | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
from matplotlib.gridspec import GridSpec | ||
import seaborn as sns | ||
|
||
from aif360.algorithms.isf_helpers.isf_metrics.disparate_impact import DisparateImpact | ||
from aif360.algorithms.isf_helpers.isf_utils.common import create_multi_group_label | ||
|
||
|
||
def calc_intersectionalbias(dataset, metric="DisparateImpact"): | ||
""" | ||
Calculate intersectional bias(DisparateImpact) by more than one sensitive attributes | ||
Parameters | ||
---------- | ||
dataset : StructuredDataset | ||
A dataset containing more than one sensitive attributes | ||
metric : str | ||
Fairness metric name | ||
["DisparateImpact"] | ||
Returns | ||
------- | ||
df_result : DataFrame | ||
Intersectional bias(DisparateImpact) | ||
""" | ||
|
||
df = dataset.convert_to_dataframe()[0] | ||
label_info = {dataset.label_names[0]: dataset.favorable_label} | ||
|
||
if metric == "DisparateImpact": | ||
fs = DisparateImpact() | ||
else: | ||
raise ValueError("metric name not in the list of allowed metrics") | ||
|
||
df_result = pd.DataFrame(columns=[metric]) | ||
for multi_group_label in create_multi_group_label(dataset)[0]: | ||
protected_attr_info = multi_group_label[0] | ||
di = fs.bias_predict(df, | ||
protected_attr_info=protected_attr_info, | ||
label_info=label_info) | ||
name = '' | ||
for k, v in protected_attr_info.items(): | ||
name += k + " = " + str(v) + "," | ||
df_result.loc[name[:-1]] = di | ||
|
||
return df_result | ||
|
||
|
||
def plot_intersectionalbias_compare(ds_bef, ds_aft, vmax=1, vmin=0, center=0, | ||
metric="DisparateImpact", | ||
title={"right": "before", "left": "after"}, | ||
filename=None): | ||
""" | ||
Compare drawing of intersectional bias in heat map | ||
Parameters | ||
---------- | ||
ds_bef : StructuredDataset | ||
Dataset containing two sensitive attributes (left figure) | ||
ds_aft : StructuredDataset | ||
Dataset containing two sensitive attributes (right figure) | ||
filename : str, optional | ||
File name(png) | ||
e.g. "./result/pict.png" | ||
metric : str | ||
Fairness metric name | ||
["DisparateImpact"] | ||
title : dictonary, optional | ||
Graph title (right figure, left figure) | ||
""" | ||
|
||
df_bef = calc_intersectionalbias_matrix(ds_bef, metric) | ||
df_aft = calc_intersectionalbias_matrix(ds_aft, metric) | ||
|
||
gs = GridSpec(1, 2) | ||
ss1 = gs.new_subplotspec((0, 0)) | ||
ss2 = gs.new_subplotspec((0, 1)) | ||
|
||
ax1 = plt.subplot(ss1) | ||
ax2 = plt.subplot(ss2) | ||
|
||
ax1.set_title(title['right']) | ||
sns.heatmap(df_bef, ax=ax1, vmax=vmax, vmin=vmin, center=center, annot=True, cmap='hot') | ||
|
||
ax2.set_title(title['left']) | ||
sns.heatmap(df_aft, ax=ax2, vmax=vmax, vmin=vmin, center=center, annot=True, cmap='hot') | ||
|
||
if filename is not None: | ||
plt.savefig(filename, format="png", dpi=300) | ||
plt.show() | ||
|
||
|
||
def calc_intersectionalbias_matrix(dataset, metric="DisparateImpact"): | ||
""" | ||
Comparison drawing of intersectional bias in heat map | ||
Parameters | ||
---------- | ||
dataset : StructuredDataset | ||
Dataset containing two sensitive attributes | ||
metric : str | ||
Fairness metric name | ||
["DisparateImpact"] | ||
Returns | ||
------- | ||
df_result : DataFrame | ||
Intersectional bias(DisparateImpact) | ||
""" | ||
|
||
protect_attr = dataset.protected_attribute_names | ||
|
||
if len(protect_attr) != 2: | ||
raise ValueError("specify 2 sensitive attributes.") | ||
|
||
if metric == "DisparateImpact": | ||
fs = DisparateImpact() | ||
else: | ||
raise ValueError("metric name not in the list of allowed metrics") | ||
|
||
df = dataset.convert_to_dataframe()[0] | ||
label_info = {dataset.label_names[0]: dataset.favorable_label} | ||
|
||
protect_attr0_values = list(set(df[protect_attr[0]])) | ||
protect_attr1_values = list(set(df[protect_attr[1]])) | ||
|
||
df_result = pd.DataFrame(columns=protect_attr1_values) | ||
|
||
for val0 in protect_attr0_values: | ||
tmp_li = [] | ||
col_list = [] | ||
for val1 in protect_attr1_values: | ||
di = fs.bias_predict(df, | ||
protected_attr_info={protect_attr[0]: val0, protect_attr[1]: val1}, | ||
label_info=label_info) | ||
tmp_li += [di] | ||
col_list += [protect_attr[1]+"="+str(val1)] | ||
|
||
df_result.loc[protect_attr[0]+"="+str(val0)] = tmp_li | ||
df_result = df_result.set_axis(col_list, axis=1) | ||
|
||
return df_result |
Oops, something went wrong.