Maintainers: Wei Nong [email: nw2y47@outlook.com] ; Ruiming Zhu [email: raymond_zhurm@outlook.com]
CrySPR /ˈkrɪspɚ/ is a Python interface for crystal structure pre-relaxation and prediction using machine-learning interatomic potentials (ML-IAPs). Features include:
- Implement structure generation from the input info (e.g., formula, Z, space group, etc.) via
pyxtal
and local structure optimization/relaxation throughase
calculator using ML-IAPs; - Implement global search task for crystal structure prediction using 1) random search (done), and 2) particle swarm optimization (PSO) for a given reduced formula (in dev ...);
- More in development
The original old repo Fast-Universal-CSP-Platform @RaymondZhurm
python >= 3.9
ase # https://wiki.fysik.dtu.dk/ase/install.html
pymatgen # https://pymatgen.org/installation.html
pyxtal # https://pyxtal.readthedocs.io/en/latest/Installation.html#installation
torch # https://pytorch.org/get-started/locally/#linux-installation
matgl # https://matgl.ai/#installation
chgnet # https://chgnet.lbl.gov/#installation
mace-torch # https://mace-docs.readthedocs.io/en/latest/guide/installation.html
scikit-opt # https://scikit-opt.github.io/scikit-opt/#/en/README?id=install
$ pip install cryspr
Note on the installation of matgl (1.0.0)
library:
- Windows OS:
pip install cryspr
will normally install all related dependencies, and thematgl
works for latest version of torch (as-of-date is 2.3.0) - Linux OS: the
matgl
requirestorch<=2.2.1
and additionallypydantic
, which is not well handled by pip. The two dependencies have to be manually installed usingpip
, or to installmatgl
using other package manager, like,conda
.
-
Download the repo or git clone.
-
Add the CrySPR project into the system PYTHONPATH either by, e.g., on Linux/Mac OS
$ export PYTHONPATH=/path/to/CrySPR:$PYTHONPATH
or by in the python code
import sys
sys.path.insert(0, '/path/to/CrySPR')
To be updated.
This example shows the implementation of crystal structure relaxation and prediction from three test space groups (No. 62, 74, 140) through a random prediction mode. The ML-IAP calculator is CHGNet.