forked from JonasSchult/Mask3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stpls3d_benchmark.sh
99 lines (93 loc) · 2.92 KB
/
stpls3d_benchmark.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/bin/bash
export OMP_NUM_THREADS=3
CURR_DBSCAN=12.5
CURR_TOPK=200
CURR_QUERY=160
CURR_SIZE=54
CURR_THRESHOLD=0.01
# TRAIN network 1 with voxel size 0.333
python main_instance_segmentation.py \
general.experiment_name="benchmark_03" \
general.project_name="stpls3d" \
data/datasets=stpls3d \
general.num_targets=15 \
data.num_labels=15 \
data.voxel_size=0.333 \
data.num_workers=10 \
data.cache_data=true \
data.cropping_v1=false \
general.reps_per_epoch=100 \
model.num_queries=${CURR_QUERY} \
general.on_crops=true \
model.config.backbone._target_=models.Res16UNet18B \
data.crop_length=${CURR_SIZE} \
general.eval_inner_core=50.0 \
data.train_mode=train_validation
# TRAIN network 2 with voxel size 0.2 and larger backbone
python main_instance_segmentation.py \
general.experiment_name="benchmark_02" \
general.project_name="stpls3d" \
data/datasets=stpls3d \
general.num_targets=15 \
data.num_labels=15 \
data.voxel_size=0.2 \
data.num_workers=10 \
data.cache_data=true \
data.cropping_v1=false \
general.reps_per_epoch=100 \
model.num_queries=${CURR_QUERY} \
general.on_crops=true \
data.crop_length=${CURR_SIZE} \
general.eval_inner_core=50.0 \
data.train_mode=train_validation
# TEST network 1
python main_instance_segmentation.py \
general.experiment_name="benchmark_03_query_${CURR_QUERY}_topk_${CURR_TOPK}_dbscan_${CURR_DBSCAN}_size_${CURR_SIZE}_T_${CURR_THRESHOLD}" \
general.project_name="stpls3d_eval" \
data/datasets=stpls3d \
general.num_targets=15 \
data.num_labels=15 \
data.voxel_size=0.333 \
data.num_workers=10 \
data.cache_data=true \
data.cropping_v1=false \
general.reps_per_epoch=100 \
model.num_queries=${CURR_QUERY} \
general.on_crops=true \
model.config.backbone._target_=models.Res16UNet18B \
general.train_mode=false \
general.checkpoint="checkpoints/stpls3d/stpls3d_benchmark_03.ckpt" \
data.crop_length=${CURR_SIZE} \
general.eval_inner_core=50.0 \
general.topk_per_image=${CURR_TOPK} \
general.use_dbscan=true \
general.dbscan_eps=${CURR_DBSCAN} \
data.test_mode=test \
general.export=true
# TEST network 2
python main_instance_segmentation.py \
general.experiment_name="benchmark_02_query_${CURR_QUERY}_topk_${CURR_TOPK}_dbscan_${CURR_DBSCAN}_size_${CURR_SIZE}_T_${CURR_THRESHOLD}" \
general.project_name="stpls3d_eval" \
data/datasets=stpls3d \
general.num_targets=15 \
data.num_labels=15 \
data.voxel_size=0.2 \
data.num_workers=10 \
data.cache_data=true \
data.cropping_v1=false \
general.reps_per_epoch=100 \
model.num_queries=${CURR_QUERY} \
general.on_crops=true \
general.train_mode=false \
general.checkpoint="checkpoints/stpls3d/stpls3d_benchmark_02.ckpt" \
data.crop_length=${CURR_SIZE} \
general.eval_inner_core=50.0 \
general.topk_per_image=${CURR_TOPK} \
general.use_dbscan=true \
general.dbscan_eps=${CURR_DBSCAN} \
data.test_mode=test \
general.export=true
# COMBINE OUTPUTS OF ENSEMBLE
# VOXEL SIZE 0.2 FOR OBJECTS OF SMALL CLASSES; VOXEL SIZE 0.333 FOR OBJECTS OF LARGE CLASS CATEGORIES
# TODO FILL IN PATHS
python merge_exports.py