-
Notifications
You must be signed in to change notification settings - Fork 78
/
fit_2D_landmarks.py
226 lines (183 loc) · 11.6 KB
/
fit_2D_landmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
'''
Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights on this
computer program.
You can only use this computer program if you have closed a license agreement with MPG or you get the right to use
the computer program from someone who is authorized to grant you that right.
Any use of the computer program without a valid license is prohibited and liable to prosecution.
Copyright 2019 Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG). acting on behalf of its
Max Planck Institute for Intelligent Systems and the Max Planck Institute for Biological Cybernetics.
All rights reserved.
More information about FLAME is available at http://flame.is.tue.mpg.de.
For comments or questions, please email us at [email protected]
'''
import os
import cv2
import sys
import argparse
import numpy as np
import tensorflow as tf
from psbody.mesh import Mesh
from psbody.mesh.meshviewer import MeshViewers
from utils.landmarks import load_embedding, tf_get_model_lmks, create_lmk_spheres, tf_project_points
from utils.project_on_mesh import compute_texture_map
from tf_smpl.batch_smpl import SMPL
from tensorflow.contrib.opt import ScipyOptimizerInterface as scipy_pt
def str2bool(val):
if isinstance(val, bool):
return val
elif isinstance(val, str):
if val.lower() in ['true', 't', 'yes', 'y']:
return True
elif val.lower() in ['false', 'f', 'no', 'n']:
return False
return False
def fit_lmk2d(target_img, target_2d_lmks, model_fname, lmk_face_idx, lmk_b_coords, weights, visualize):
'''
Fit FLAME to 2D landmarks
:param target_2d_lmks target 2D landmarks provided as (num_lmks x 3) matrix
:param model_fname saved FLAME model
:param lmk_face_idx face indices of the landmark embedding in the FLAME topology
:param lmk_b_coords barycentric coordinates of the landmark embedding in the FLAME topology
(i.e. weighting of the three vertices for the trinagle, the landmark is embedded in
:param weights weights of the individual objective functions
:param visualize visualize fitting progress
:return: a mesh with the fitting results
'''
tf_trans = tf.Variable(np.zeros((1,3)), name="trans", dtype=tf.float64, trainable=True)
tf_rot = tf.Variable(np.zeros((1,3)), name="rot", dtype=tf.float64, trainable=True)
tf_pose = tf.Variable(np.zeros((1,12)), name="pose", dtype=tf.float64, trainable=True)
tf_shape = tf.Variable(np.zeros((1,300)), name="shape", dtype=tf.float64, trainable=True)
tf_exp = tf.Variable(np.zeros((1,100)), name="expression", dtype=tf.float64, trainable=True)
smpl = SMPL(model_fname)
tf_model = tf.squeeze(smpl(tf_trans,
tf.concat((tf_shape, tf_exp), axis=-1),
tf.concat((tf_rot, tf_pose), axis=-1)))
with tf.Session() as session:
# session.run(tf.global_variables_initializer())
# Mirror landmark y-coordinates
target_2d_lmks[:,1] = target_img.shape[0]-target_2d_lmks[:,1]
lmks_3d = tf_get_model_lmks(tf_model, smpl.f, lmk_face_idx, lmk_b_coords)
s2d = np.mean(np.linalg.norm(target_2d_lmks-np.mean(target_2d_lmks, axis=0), axis=1))
s3d = tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square(lmks_3d-tf.reduce_mean(lmks_3d, axis=0))[:, :2], axis=1)))
tf_scale = tf.Variable(s2d/s3d, dtype=lmks_3d.dtype)
# trans = 0.5*np.array((target_img.shape[0], target_img.shape[1]))/tf_scale
# trans = 0.5 * s3d * np.array((target_img.shape[0], target_img.shape[1])) / s2d
lmks_proj_2d = tf_project_points(lmks_3d, tf_scale, np.zeros(2))
factor = max(max(target_2d_lmks[:,0]) - min(target_2d_lmks[:,0]),max(target_2d_lmks[:,1]) - min(target_2d_lmks[:,1]))
lmk_dist = weights['lmk']*tf.reduce_sum(tf.square(tf.subtract(lmks_proj_2d, target_2d_lmks))) / (factor ** 2)
neck_pose_reg = weights['neck_pose']*tf.reduce_sum(tf.square(tf_pose[:,:3]))
jaw_pose_reg = weights['jaw_pose']*tf.reduce_sum(tf.square(tf_pose[:,3:6]))
eyeballs_pose_reg = weights['eyeballs_pose']*tf.reduce_sum(tf.square(tf_pose[:,6:]))
shape_reg = weights['shape']*tf.reduce_sum(tf.square(tf_shape))
exp_reg = weights['expr']*tf.reduce_sum(tf.square(tf_exp))
session.run(tf.global_variables_initializer())
if visualize:
def on_step(verts, scale, faces, target_img, target_lmks, opt_lmks, lmk_dist=0.0, shape_reg=0.0, exp_reg=0.0, neck_pose_reg=0.0, jaw_pose_reg=0.0, eyeballs_pose_reg=0.0):
import cv2
import sys
import numpy as np
from psbody.mesh import Mesh
from utils.render_mesh import render_mesh
if lmk_dist>0.0 or shape_reg>0.0 or exp_reg>0.0 or neck_pose_reg>0.0 or jaw_pose_reg>0.0 or eyeballs_pose_reg>0.0:
print('lmk_dist: %f, shape_reg: %f, exp_reg: %f, neck_pose_reg: %f, jaw_pose_reg: %f, eyeballs_pose_reg: %f' % (lmk_dist, shape_reg, exp_reg, neck_pose_reg, jaw_pose_reg, eyeballs_pose_reg))
plt_target_lmks = target_lmks.copy()
plt_target_lmks[:, 1] = target_img.shape[0] - plt_target_lmks[:, 1]
for (x, y) in plt_target_lmks:
cv2.circle(target_img, (int(x), int(y)), 4, (0, 0, 255), -1)
plt_opt_lmks = opt_lmks.copy()
plt_opt_lmks[:,1] = target_img.shape[0] - plt_opt_lmks[:,1]
for (x, y) in plt_opt_lmks:
cv2.circle(target_img, (int(x), int(y)), 4, (255, 0, 0), -1)
if sys.version_info >= (3, 0):
rendered_img = render_mesh(Mesh(scale*verts, faces), height=target_img.shape[0], width=target_img.shape[1])
for (x, y) in plt_opt_lmks:
cv2.circle(rendered_img, (int(x), int(y)), 4, (255, 0, 0), -1)
target_img = np.hstack((target_img, rendered_img))
cv2.imshow('img', target_img)
cv2.waitKey(10)
else:
def on_step(*_):
pass
print('Optimize rigid transformation')
vars = [tf_scale, tf_trans, tf_rot]
loss = lmk_dist
optimizer = scipy_pt(loss=loss, var_list=vars, method='L-BFGS-B', options={'disp': 1, 'ftol': 5e-6})
optimizer.minimize(session, fetches=[tf_model, tf_scale, tf.constant(smpl.f), tf.constant(target_img), tf.constant(target_2d_lmks), lmks_proj_2d], loss_callback=on_step)
print('Optimize model parameters')
vars = [tf_scale, tf_trans[:2], tf_rot, tf_pose, tf_shape, tf_exp]
loss = lmk_dist + shape_reg + exp_reg + neck_pose_reg + jaw_pose_reg + eyeballs_pose_reg
optimizer = scipy_pt(loss=loss, var_list=vars, method='L-BFGS-B', options={'disp': 0, 'ftol': 1e-7})
optimizer.minimize(session, fetches=[tf_model, tf_scale, tf.constant(smpl.f), tf.constant(target_img), tf.constant(target_2d_lmks), lmks_proj_2d,
lmk_dist, shape_reg, exp_reg, neck_pose_reg, jaw_pose_reg, eyeballs_pose_reg], loss_callback=on_step)
print('Fitting done')
np_verts, np_scale = session.run([tf_model, tf_scale])
return Mesh(np_verts, smpl.f), np_scale
def run_2d_lmk_fitting(model_fname, flame_lmk_path, texture_mapping, target_img_path, target_lmk_path, out_path, visualize):
if 'generic' not in model_fname:
print('You are fitting a gender specific model (i.e. female / male). Please make sure you selected the right gender model. Choose the generic model if gender is unknown.')
if not os.path.exists(flame_lmk_path):
print('FLAME landmark embedding not found - %s ' % flame_lmk_path)
return
if not os.path.exists(target_img_path):
print('Target image not found - s' % target_img_path)
return
if not os.path.exists(target_lmk_path):
print('Landmarks of target image not found - s' % target_lmk_path)
return
if not os.path.exists(out_path):
os.makedirs(out_path)
lmk_face_idx, lmk_b_coords = load_embedding(flame_lmk_path)
target_img = cv2.imread(target_img_path)
lmk_2d = np.load(target_lmk_path)
weights = {}
# Weight of the landmark distance term
weights['lmk'] = 1.0
# Weight of the shape regularizer
weights['shape'] = 1e-3
# Weight of the expression regularizer
weights['expr'] = 1e-3
# Weight of the neck pose (i.e. neck rotationh around the neck) regularizer
weights['neck_pose'] = 100.0
# Weight of the jaw pose (i.e. jaw rotation for opening the mouth) regularizer
weights['jaw_pose'] = 1e-3
# Weight of the eyeball pose (i.e. eyeball rotations) regularizer
weights['eyeballs_pose'] = 10.0
result_mesh, result_scale = fit_lmk2d(target_img, lmk_2d, model_fname, lmk_face_idx, lmk_b_coords, weights, visualize)
if sys.version_info >= (3, 0):
texture_data = np.load(texture_mapping, allow_pickle=True, encoding='latin1').item()
else:
texture_data = np.load(texture_mapping, allow_pickle=True).item()
texture_map = compute_texture_map(target_img, result_mesh, result_scale, texture_data)
out_mesh_fname = os.path.join(out_path, os.path.splitext(os.path.basename(target_img_path))[0] + '.obj')
out_img_fname = os.path.join(out_path, os.path.splitext(os.path.basename(target_img_path))[0] + '.png')
cv2.imwrite(out_img_fname, texture_map)
result_mesh.set_vertex_colors('white')
result_mesh.vt = texture_data['vt']
result_mesh.ft = texture_data['ft']
result_mesh.set_texture_image(out_img_fname)
result_mesh.write_obj(out_mesh_fname)
np.save(os.path.join(out_path, os.path.splitext(os.path.basename(target_img_path))[0] + '_scale.npy'), result_scale)
if visualize:
mv = MeshViewers(shape=[1,2], keepalive=True)
mv[0][0].set_static_meshes([Mesh(result_mesh.v, result_mesh.f)])
mv[0][1].set_static_meshes([result_mesh])
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Build texture from image')
# Path of the Tensorflow FLAME model (generic, female, male gender)
# Choose the generic model if gender is unknown
parser.add_argument('--model_fname', default='./models/generic_model.pkl', help='Path of the FLAME model')
# Path of the landamrk embedding file into the FLAME surface
parser.add_argument('--flame_lmk_path', default='./data/flame_static_embedding.pkl', help='Path of the landamrk embedding file into the FLAME surface')
# Pre-computed texture mapping for FLAME topology meshes
parser.add_argument('--texture_mapping', default='./data/texture_data.npy', help='pre-computed FLAME texture mapping')
# Target image (used for visualization only)
parser.add_argument('--target_img_path', default='./data/imgHQ00088.jpeg', help='Path of the target image')
# 2D landmark file that should be fitted (landmarks must be corresponding with the defined FLAME landmarks)
# see "img1_lmks_visualized.jpeg" or "see the img2_lmks_visualized.jpeg" for the order of the landmarks
parser.add_argument('--target_lmk_path', default='./data/imgHQ00088_lmks.npy', help='2D landmark file that should be fitted (landmarks must be corresponding with the defined FLAME landmarks)')
# Output path
parser.add_argument('--out_path', default='./results', help='Path of the fitting output')
# Visualize fitting
parser.add_argument('--visualize', default='True', help='Visualize fitting progress and final fitting result')
args = parser.parse_args()
run_2d_lmk_fitting(args.model_fname, args.flame_lmk_path, args.texture_mapping, args.target_img_path, args.target_lmk_path, args.out_path, str2bool(args.visualize))