This research applies deep networks to simulate the spatial and temporal evolution of a forest fire's impact on a region. Using a Conditional Variational Autoencoder (CVAE) model, we generate intermediate representations of the burnt area's evolution. we also employ a CVAE model to predict future fire propagation behavior, estimating the burnt area at various time horizons and propagation stages. Real-world data is used to assess the model's performance, with results showing high similarity and temporal consistency metrics, indicating that the application of CVAE in this context is capable.
conda
for managing Python environments.git
for version control.zenodo-get
downloader.- Python 3.10.
spatiotemporal-vae-reconstruction/ 📁
├── checkpoints/ 💾: Checkpoints for model training
├── data/ 📂: Data
├── logs/ 📃: Log files
├── notebooks/ 📓: Jupyter notebooks
│ ├── 1_data_preparation.ipynb 📊: Data preparation
│ ├── 2_modelling.ipynb 📚: Model training
│ ├── 3_evaluation.ipynb 📈: Evaluation
│ └── ...
├── outputs/ 📺: Output files generated during execution
├── src/ 📜: Source code files
│ ├── __init__.py
│ ├── cvae_model.py 📑: CVAE model implementation
│ ├── eval.py 📐: Evaluation script
│ ├── utils.py 🛠️: Utility functions
│ └── ...
├── .gitignore 🚫: Files to ignore in Git
├── config.yml 🎛️: Configuration settings
├── README.md 📖: Project README file
└── requirements.txt 📄: Dependencies
This project has been tested on the following operating systems:
- Pop! OS 22.04 LTS (Nvidia)
- Windows 11
- Tensorflow 2.15.0
- CUDA 11.5
# Create a new Conda environment named 'cvae' with Python version 3.10
conda create --name cvae python=3.10
# Clone the 'spatiotemporal-vae-reconstruction' project from GitHub
git clone https://github.com/Tiago1Ribeiro/spatiotemporal-vae-reconstruction.git
# Change the current directory to the cloned project's directory
cd spatiotemporal-vae-reconstruction
# Install the Python dependencies listed in the 'requirements.txt' file
pip install -r requirements.txt
# Downloads *BurnedAreaUAU* dataset and save it in the 'dataset' directory
zenodo_get --output dataset 10.5281/zenodo.7944963 # or download it from the link below
- Include the U-Net samples (Base, RED, 3D) and sampled_masks.txt in the dataset (new Zenodo version)
- Test repo in other machines
@article{ribeiro2024modelling,
title={Modelling forest fire dynamics using conditional variational autoencoders},
author={Ribeiro, Tiago Filipe Rodrigues and Silva, Fernando Jos{\'e} Mateus da and Costa, Rog{\'e}rio Lu{\'\i}s de Carvalho},
journal={Information Systems Frontiers},
pages={1--20},
year={2024},
publisher={Springer},
doi = {https://doi.org/10.1007/s10796-024-10507-9}
}
@misc{ba_uav_dataset,
author = {Ribeiro, Tiago F. R. and Silva, Fernando and Moreira, Jos\'e and Costa, Ro\'erio Lu\'is de C.},
title = {BurnedAreaUAV Dataset (v1.1)},
month = may,
year = 2023,
publisher = {Zenodo},
version = {1.1},
doi = {10.5281/zenodo.7944963},
}