forked from karpathy/ng-video-lecture
-
Notifications
You must be signed in to change notification settings - Fork 1
/
gpt.py
299 lines (255 loc) · 11.6 KB
/
gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import glob, time, pickle, os
import torch
import torch.nn as nn
from torch.nn import functional as F
from char_filter import char_filter
# config
data_path = './input'
data_cache_path = './data_cache.pkl'
# ------------
# model parameters
block_size = 256 # what is the maximum context length for predictions?
n_embd = 384 # embedding size (dimensionality of the hidden state)
n_head = 6 # number of heads in multi-head attention in pytorch
n_layer = 6 # number of layers in the transformer model
dropout = 0.2 # dropout rate (probability of zeroing out activations)
# ------------
torch.manual_seed(1337)
char_filter_list = None
def sanitize_text(text: str) -> str:
"""Removes all characters except for ones in char_filter_list, which gets set in read_data()"""
text = ''.join([c for c in text if c in char_filter_list])
text.replace("()", "").replace("[]", "").replace("{}", "").replace("<>", "").replace(" ", " ")
return text
def read_data(path: str) -> dict:
"""Reads data from path, splits into train and val, and returns a dictionary with the following keys:
train_data: tensor of integers representing the training data
val_data: tensor of integers representing the validation data
vocab_size: number of unique characters in the data
stoi: dictionary mapping characters to integers
itos: dictionary mapping integers to characters
"""
global char_filter_list
char_filter_list, texts = char_filter(path)
train_data = ""
val_data = ""
for text in texts:
text = sanitize_text(text)
# split into train and val
n = int(0.9*len(text)) # first 90% will be train, rest val
train_data += text[:n]
val_data += text[n:]
text = train_data + val_data
# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
# decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# Train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
return {"train_data": train_data, "val_data": val_data, "vocab_size": vocab_size, "stoi": stoi, "itos": itos}
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size, n_embd, dropout, block_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B,T,C = x.shape
k = self.key(x) # (B,T,C)
q = self.query(x) # (B,T,C)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,C)
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
return out
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, n_head, head_size, n_embd, dropout, block_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size, n_embd, dropout, block_size) for _ in range(n_head)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embd, dropout):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head, dropout, block_size):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size, n_embd, dropout, block_size)
self.ffwd = FeedFoward(n_embd, dropout)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class GPTLanguageModel(nn.Module):
def __init__(self, n_embd, n_head, n_layer, vocab_size, dropout, block_size, device):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head, dropout, block_size) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = nn.Linear(n_embd, vocab_size)
self.device = device
self.block_size = block_size
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=self.device)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def top_k_logits(logits, k) -> torch.Tensor:
if k == 0:
return logits
values, _ = torch.topk(logits, k)
min_values = values[:, -1]
return torch.where(logits < min_values, torch.ones_like(logits, dtype=logits.dtype) * -1e10, logits)
def generate(self, idx, max_new_tokens, temperature: float = 1.0, top_k: int = 0) -> torch.Tensor:
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -self.block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] / temperature # becomes (B, C)
# apply top-k sampling
# logits = self.top_k_logits(logits, k=top_k)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
class GPT:
def __init__(self, data_path, data_cache_path, block_size, n_embd: int = None, n_head: int = None, n_layer: int = None, dropout: float = None):
self.data_path = data_path
self.data_cache_path = data_cache_path
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.block_size = block_size
loadt1 = time.time()
if os.path.isfile(self.data_cache_path):
with open(self.data_cache_path, 'rb') as fp:
data = pickle.load(fp)
n_embd = data["n_embd"]
n_head = data["n_head"]
n_layer = data["n_layer"]
dropout = data["n_dropout"]
print("pickle", end=" ")
else:
if not all([n_embd, n_head, n_layer, dropout]):
raise ValueError("Must specify all of n_embd, n_head, n_layer, dropout when training on new data")
data = read_data(self.data_path)
data["n_embd"] = n_embd
data["n_head"] = n_head
data["n_layer"] = n_layer
data["n_dropout"] = dropout
with open(self.data_cache_path, 'wb') as fp:
pickle.dump(data, fp)
print("txt", end=" ")
loadt2 = time.time()
print(f"data load time: {loadt2-loadt1:.2f} seconds")
print(f"model params: {n_layer} layers, {n_head} heads, {n_embd} embedding size, {dropout} dropout")
self.n_embd = n_embd
self.n_head = n_head
self.n_layer = n_layer
self.dropout = dropout
self.vocab_size = data["vocab_size"]
stoi = data["stoi"]
itos = data["itos"]
self.encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
self.decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
self.inputdata = { 'train': data["train_data"], 'val': data["val_data"] }
print("train:", len(self.inputdata["train"]), "val:", len(self.inputdata["val"]), "vocab:", self.vocab_size)
self.model = None
# data loading
def get_batch(self, set_name: str, batch_size: int):
# generate a small batch of data of inputs x and targets y
ix = torch.randint(len(self.inputdata[set_name]) - self.block_size, (batch_size,))
x = torch.stack([self.inputdata[set_name][i:i+self.block_size] for i in ix])
y = torch.stack([self.inputdata[set_name][i+1:i+self.block_size+1] for i in ix])
x, y = x.to(self.device), y.to(self.device)
return x, y
@torch.no_grad()
def estimate_loss(self, eval_iters: int, batch_size: int):
out = {}
self.model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = self.get_batch(split, batch_size=batch_size)
logits, loss = self.model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
self.model.train()
return out
def get_model(self, gpu: bool = True) -> GPTLanguageModel:
if self.model is None:
self.model = GPTLanguageModel(
n_embd=self.n_embd,
n_head=self.n_head,
n_layer=self.n_layer,
vocab_size=self.vocab_size,
dropout=self.dropout,
block_size=self.block_size,
device=self.device
)
# print the number of parameters in the model
print('initialized gpt model with', sum(p.numel() for p in self.model.parameters())/1e6, 'M parameters')
if gpu:
self.model = self.model.to(self.device)
#model = model.half().to(device) # for fp16
return self.model
gpt = GPT(
data_path=data_path,
data_cache_path=data_cache_path,
block_size=block_size,
n_embd=n_embd,
n_head=n_head,
n_layer=n_layer,
dropout=dropout
)